Shakeel Ahmed

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/196054/shakeel-ahmed-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 4,004 49 57 g-index h-index citations papers 6.46 4,751 5.1 57 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
49	Zeolites for food applications: A review. <i>Food Bioscience</i> , 2022 , 46, 101577	4.9	2
48	Introduction to Nanotechnology-Enhanced Food Packaging Industry 2022 , 1-17		
47	Eco-friendly natural extract loaded antioxidative chitosan/polyvinyl alcohol based active films for food packaging. <i>Heliyon</i> , 2021 , 7, e06550	3.6	5
46	Molecularly imprinted polymers for food applications: A review. <i>Trends in Food Science and Technology</i> , 2021 , 111, 642-669	15.3	19
45	Advanced green materials: An overview 2021 , 1-13		O
44	Potential biodegradable face mask to counter environmental impact of Covid-19. <i>Cleaner Engineering and Technology</i> , 2021 , 4, 100218	2.7	13
43	Physical and chemical modification of chitosan-based green materials 2021 , 379-397		
42	Overview on Recycling from Waste in Fashion and Textiles 2020 , 1-18		1
41	Green Synthesis of Metal, Metal Oxide Nanoparticles, and Their Various Applications 2019 , 2281-2325		2
40	Composites: Types, Method of Preparation and Application as An Emerging Tool for Environmental Remediation 2019 , 1-31		
39	Phytomediated Synthesis of Cerium Oxide Nanoparticles and Their Applications 2019 , 261-284		1
38	A review on chitosan centred scaffolds and their applications in tissue engineering. <i>International Journal of Biological Macromolecules</i> , 2018 , 116, 849-862	7.9	133
37	Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. <i>Journal of Applied Biomedicine</i> , 2018 , 16, 221-231	0.6	54
36	Chitosan Based Nanomaterials for Biomedical Applications 2018 , 543-562		3
35	Development of Hydrogels from Edible Polymers 2018 , 551-589		1
34	Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6940-6967	5.7	119
33	Carrageenans: Structure, Properties and Applications 2018 , 29-52		2

(2016-2018)

32	A review on chitosan and its nanocomposites in drug delivery. <i>International Journal of Biological Macromolecules</i> , 2018 , 109, 273-286	7.9	548
31	Silver ferrite and cobalt ferrite dispersed castor oil polyurethane nanocomposites: Quenching studies of bovine serum albumin. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2018 , 67, 925-933	3	4
30	Green Synthesis of Metallic Nanoparticles Using Biopolymers and Plant Extracts 2018, 293-319		7
29	Green Synthesis of Silver Nanoparticles for Biomedical and Environmental Applications 2018 , 287-439		3
28	Eco-Friendly Noble Metal Nanoparticles for Therapeutic Applications: Present and Future Scenario 2018 , 629-665		2
27	Green Engineered Functional Textile Materials 2018 , 263-287		O
26	Green and Sustainable Textile Materials Using Natural Resources 2018 , 213-261		14
25	Green Synthesis of Metal, Metal Oxide Nanoparticles, and Their Various Applications 2018, 1-45		15
24	Chitosan in Water Purification Technology 2018 , 111-123		2
23	Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of mediated silver nanoparticles. <i>Toxicology Research</i> , 2018 , 7, 923-930	2.6	31
22	Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications 2017 , 381-398		3
21	A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2017 , 166, 272-284	6.7	268
20	Chitin and Chitosan: History, Composition and Properties 2017 , 1-24		5
19	Production of Chitin, Chitosan, and Chitooligosaccharide from Shrimp and Crab Shells Using Green Technology and Applications of Their Composite Materials 2017 , 89-113		2
18	Chitosan Applications for the Food Industry 2017 , 183-232		45
17	2017,		24
16	Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extractPeer review under responsibility of The Egyptian Society of Radiation Sciences and Applications. View all notes. <i>Journal of Radiation Research and Applied Sciences</i> , 2016 , 9, 1-7	1.5	536
15	A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. <i>Journal of Advanced Research</i> , 2016 , 7, 17-28	13	1416

14	Chitosan and gelatin based biodegradable packaging films with UV-light protection. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2016 , 163, 115-24	6.7	69
13	Chitosan Based Scaffolds and Their Applications in Wound Healing. <i>Achievements in the Life Sciences</i> , 2016 , 10, 27-37		224
12	Synthesis and characterization of terepthalaldehyde E hiocarbohydrazide polymer doped with Cu(II) and Zn(II) Metal ions for solar cell applications. <i>Optik</i> , 2016 , 127, 4329-4332	2.5	6
11	One-Step Method for Formation of Silver Nanoparticles Using Withania somnifera Extract for Antimicrobial Activities. <i>Journal of Bionanoscience</i> , 2016 , 10, 47-53		11
10	Physicochemical Characterization of Gluteraldehyde Crosslinked Chitosan-Gelatin Films. <i>Materials Focus</i> , 2016 , 5, 165-170		2
9	Synthesis of Silver Nanoparticles Using Leaf Extract of Crotolaria retusa as Antimicrobial Green Catalyst. <i>Journal of Bionanoscience</i> , 2016 , 10, 282-287		16
8	Biosynthesis of gold nanoparticles: A green approach. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2016 , 161, 141-53	6.7	201
7	Fe(III)Bn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. <i>Journal of Molecular Liquids</i> , 2016 , 224, 431-441	6	73
6	Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. <i>Carbohydrate Polymers</i> , 2015 , 132, 164-72	10.3	67
5	Silver Nanoparticles: One Pot Green Synthesis Using Terminalia arjuna Extract for Biological Application. <i>Journal of Nanomedicine & Nanotechnology</i> , 2015 , 06,	1.9	24
4	Chitosan Based Dressings for Wound Care 2015 , 01,		18
3	Handbook of Biopolymers		4
2	Biocomposites		4
1	Green synthesis of chitosan/nanosilver hybrid bionanocomposites with promising antimicrobial, antioxidant and anticervical cancer activity. <i>Polymers and Polymer Composites</i> ,096739112199397	0.8	3