Cynthia H Twohy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960533/publications.pdf

Version: 2024-02-01

36 papers

3,345 citations

218677 26 h-index 36 g-index

40 all docs

40 docs citations

times ranked

40

3392 citing authors

#	Article	IF	CITATIONS
1	Chemical consequences of the initial diffusional growth of cloud droplets: a clean marine case. Tellus, Series B: Chemical and Physical Meteorology, 2022, 41, 51.	1.6	21
2	Organic composition of three different size ranges of aerosol particles over the Southern Ocean. Aerosol Science and Technology, 2021, 55, 268-288.	3.1	13
3	Cloudâ€Nucleating Particles Over the Southern Ocean in a Changing Climate. Earth's Future, 2021, 9, e2020EF001673.	6.3	33
4	Measurement report: Cloud processes and the transport of biological emissions affect southern ocean particle and cloud condensation nuclei concentrations. Atmospheric Chemistry and Physics, 2021, 21, 3427-3446.	4.9	35
5	Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low Cloud Properties. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033529.	3.3	32
6	Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bulletin of the American Meteorological Society, 2021, 102, E894-E928.	3.3	103
7	Biomass Burning Smoke and Its Influence on Clouds Over the Western U. S Geophysical Research Letters, 2021, 48, e2021GL094224.	4.0	13
8	Observations of Ice Nucleating Particles in the Free Troposphere From Western US Wildfires. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033752.	3.3	24
9	Simulating Observations of Southern Ocean Clouds and Implications for Climate. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032619.	3.3	42
10	The Observed Influence of Tropical Convection on the Saharan Dust Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10896-10912.	3.3	8
11	Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8833-8851.	3.3	16
12	Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging Probes: Fundamentals, Uncertainties, and Efforts toward Consistency. Meteorological Monographs, 2017, 58, 11.1-11.33.	5.0	56
13	Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds. Atmospheric Chemistry and Physics, 2016, 16, 8205-8225.	4.9	50
14	Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface. Geophysical Research Letters, 2016, 43, 10,463.	4.0	6
15	Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1502-1519.	3.3	13
16	Measurements of Saharan Dust in Convective Clouds over the Tropical Eastern Atlantic Ocean*. Journals of the Atmospheric Sciences, 2015, 72, 75-81.	1.7	30
17	Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 2013, 340, 1320-1324.	12.6	442
18	Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean. Atmospheric Chemistry and Physics, 2013, 13, 2541-2562.	4.9	34

#	Article	IF	Citations
19	Observations of Saharan dust microphysical and optical properties from the Eastern Atlantic during NAMMA airborne field campaign. Atmospheric Chemistry and Physics, 2011, 11, 723-740.	4.9	80
20	Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11217-11222.	7.1	945
21	Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4. Journal of Geophysical Research, 2010, 115, .	3.3	31
22	An overview of aircraft observations from the Pacific Dust Experiment campaign. Journal of Geophysical Research, 2009, 114, .	3.3	109
23	Effect of changes in relative humidity on aerosol scattering near clouds. Journal of Geophysical Research, 2009, 114, .	3.3	125
24	The Saharan Air Layer and the Fate of African Easterly Waves—NASA's AMMA Field Study of Tropical Cyclogenesis. Bulletin of the American Meteorological Society, 2009, 90, 1137-1156.	3.3	119
25	Saharan dust particles nucleate droplets in eastern Atlantic clouds. Geophysical Research Letters, 2009, 36, .	4.0	174
26	Uniform particleâ€droplet partitioning of 18 organic and elemental components measured in and below DYCOMSâ€II stratocumulus clouds. Journal of Geophysical Research, 2008, 113, .	3.3	17
27	Scavenging of black carbon by ice crystals over the northern Pacific. Geophysical Research Letters, 2008, 35, .	4.0	41
28	Refinements to Ice Particle Mass Dimensional and Terminal Velocity Relationships for Ice Clouds. Part I: Temperature Dependence. Journals of the Atmospheric Sciences, 2007, 64, 1047-1067.	1.7	75
29	Comparisons of in situ measurements of cirrus cloud ice water content. Journal of Geophysical Research, 2007, 112, .	3.3	34
30	Chemical characteristics of ice residual nuclei in anvil cirrus clouds: evidence for homogeneous and heterogeneous ice formation. Atmospheric Chemistry and Physics, 2005, 5, 2289-2297.	4.9	112
31	Small, highly reflective ice crystals in low-latitude cirrus. Geophysical Research Letters, 2003, 30, .	4.0	98
32	Performance of a Counterflow Virtual Impactor in the NASA Icing Research Tunnel. Journal of Atmospheric and Oceanic Technology, 2003, 20, 781-790.	1.3	54
33	Deep convection as a source of new particles in the midlatitude upper troposphere. Journal of Geophysical Research, 2002, 107, AAC 6-1-AAC 6-10.	3.3	99
34	Particle production in the outflow of a midlatitude storm. Journal of Geophysical Research, 2002, 107, AAC 5-1-AAC 5-9.	3.3	23
35	Measurement of Condensed Water Content in Liquid and Ice Clouds Using an Airborne Counterflow Virtual Impactor. Journal of Atmospheric and Oceanic Technology, 1997, 14, 197-202.	1.3	138
36	Lightâ€absorbing material extracted from cloud droplets and its effect on cloud albedo. Journal of Geophysical Research, 1989, 94, 8623-8631.	3.3	92