Yoshiharu Matsuura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960388/publications.pdf

Version: 2024-02-01

9756 7496 26,442 281 73 151 citations h-index g-index papers 306 306 306 28945 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441, 101-105.	13.7	3,292
2	Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). Journal of Biological Chemistry, 1996, 271, 20246-20249.	1.6	1,767
3	The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nature Medicine, 1998, 4, 1065-1067.	15.2	1,153
4	Formation of Actin Stress Fibers and Focal Adhesions Enhanced by Rho-Kinase. Science, 1997, 275, 1308-1311.	6.0	999
5	Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170. Cell, 2002, 109, 873-885.	13.5	537
6	Role of IQGAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin- Mediated Cell-Cell Adhesion., 1998, 281, 832-835.		454
7	cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biology, 2000, 2, 805-811.	4.6	431
8	SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host and Microbe, 2021, 29, 1124-1136.e11.	5.1	421
9	Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature, 1993, 362, 75-79.	13.7	415
10	The Ubiquitin Ligase TRIM56 Regulates Innate Immune Responses to Intracellular Double-Stranded DNA. Immunity, 2010, 33, 765-776.	6.6	400
11	Interactions of Drebrin and Gephyrin with Profilin. Biochemical and Biophysical Research Communications, 1998, 243, 86-89.	1.0	393
12	Interaction of Hepatitis C Virus Nonstructural Protein 5A with Core Protein Is Critical for the Production of Infectious Virus Particles. Journal of Virology, 2008, 82, 7964-7976.	1.5	322
13	The Ras Target AF-6 Interacts with ZO-1 and Serves as a Peripheral Component of Tight Junctions in Epithelial Cells. Journal of Cell Biology, 1997, 139, 785-795.	2.3	294
14	Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility. Journal of Cell Biology, 1999, 145, 347-361.	2.3	278
15	Tomosyn: a Syntaxin-1–Binding Protein that Forms a Novel Complex in the Neurotransmitter Release Process. Neuron, 1998, 20, 905-915.	3.8	272
16	Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunology, 2006, 7, 962-970.	7.0	249
17	The COOH Terminus of Rho-kinase Negatively Regulates Rho-kinase Activity. Journal of Biological Chemistry, 1999, 274, 32418-32424.	1.6	246
18	Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO Journal, 2006, 25, 5015-5025.	3.5	230

#	Article	IF	CITATIONS
19	CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nature Cell Biology, 2003, 5, 819-826.	4.6	227
20	Baculovirus Induces an Innate Immune Response and Confers Protection from Lethal Influenza Virus Infection in Mice. Journal of Immunology, 2003, 171, 1133-1139.	0.4	218
21	IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22351-22356.	3.3	215
22	Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12986-12991.	3.3	214
23	Involvement of the Toll-Like Receptor 9 Signaling Pathway in the Induction of Innate Immunity by Baculovirus. Journal of Virology, 2005, 79, 2847-2858.	1.5	209
24	Cdc42 and Rac1 Regulate the Interaction of IQGAP1 with \hat{I}^2 -Catenin. Journal of Biological Chemistry, 1999, 274, 26044-26050.	1.6	205
25	An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell, 2021, 184, 3452-3466.e18.	13.5	205
26	p140Sra-1 (Specifically Rac1-associated Protein) Is a Novel Specific Target for Rac1 Small GTPase. Journal of Biological Chemistry, 1998, 273, 291-295.	1.6	203
27	Association of the Myosin-binding Subunit of Myosin Phosphatase and Moesin: Dual Regulation of Moesin Phosphorylation by Rho-associated Kinase and Myosin Phosphatase. Journal of Cell Biology, 1998, 141, 409-418.	2.3	197
28	Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. Journal of Cell Biology, 2009, 186, 147-160.	2.3	194
29	Critical role of PA28Â in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1661-1666.	3.3	192
30	Severe Acute Respiratory Syndrome Coronavirus nsp1 Facilitates Efficient Propagation in Cells through a Specific Translational Shutoff of Host mRNA. Journal of Virology, 2012, 86, 11128-11137.	1.5	187
31	Regulation of the Association of Adducin with Actin Filaments by Rho-associated Kinase (Rho-kinase) and Myosin Phosphatase. Journal of Biological Chemistry, 1998, 273, 5542-5548.	1.6	186
32	Critical Role of Virion-Associated Cholesterol and Sphingolipid in Hepatitis C Virus Infection. Journal of Virology, 2008, 82, 5715-5724.	1.5	186
33	Regulation of Cross-linking of Actin Filament by IQGAP1, a Target for Cdc42. Journal of Biological Chemistry, 1997, 272, 29579-29583.	1.6	184
34	Human VAP-B Is Involved in Hepatitis C Virus Replication through Interaction with NS5A and NS5B. Journal of Virology, 2005, 79, 13473-13482.	1.5	181
35	Neurabin: A Novel Neural Tissue–specific Actin Filament–binding Protein Involved in Neurite Formation. Journal of Cell Biology, 1997, 139, 951-961.	2.3	180
36	Entirely plasmid-based reverse genetics system for rotaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2349-2354.	3.3	172

#	Article	IF	Citations
37	GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by β-catenin and protein phosphatase 2A complexed with Axin. Oncogene, 2000, 19, 537-545.	2.6	170
38	In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses. Journal of Virology, 2003, 77, 9799-9808.	1.5	169
39	Isolation and Characterization of a GTPase Activating Protein Specific for the Rab3 Subfamily of Small G Proteins. Journal of Biological Chemistry, 1997, 272, 4655-4658.	1.6	165
40	Hepatitis C virus core protein binds to apolipoprotein All and its secretion is modulated by fibrates. Hepatology, 1999, 30, 1064-1076.	3.6	158
41	Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO Journal, 2003, 22, 2047-2059.	3.5	155
42	Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications. Molecular Therapy, 2013, 21, 739-749.	3.7	155
43	Isolation and Characterization of a GDP/GTP Exchange Protein Specific for the Rab3 Subfamily Small G Proteins. Journal of Biological Chemistry, 1997, 272, 3875-3878.	1.6	154
44	Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines. Journal of Virology, 2007, 81, 8953-8966.	1.5	151
45	Interaction of hepatitis C virus core protein with retinoid X receptor $\hat{l}\pm$ modulates its transcriptional activity. Hepatology, 2002, 35, 937-946.	3.6	148
46	Interaction of Hepatitis C Virus Core Protein with Viral Sense RNA and Suppression of Its Translation. Journal of Virology, 1999, 73, 9718-9725.	1.5	146
47	Proteasome Activator PA28γ-Dependent Nuclear Retention and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2003, 77, 10237-10249.	1.5	143
48	IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of Cell Science, 2007, 120, 567-577.	1,2	138
49	High titers of antibodies inhibiting the binding of envelope to human cells correlate with natural resolution of chronic hepatitis C. Hepatology, 1998, 28, 1117-1120.	3.6	134
50	ATF6 \hat{l}^2 is a host cellular target of the <i>Toxoplasma gondii</i> virulence factor ROP18. Journal of Experimental Medicine, 2011, 208, 1533-1546.	4.2	133
51	Molecular Determinants for Subcellular Localization of Hepatitis C Virus Core Protein. Journal of Virology, 2005, 79, 1271-1281.	1.5	127
52	Nuclear Localization of Japanese Encephalitis Virus Core Protein Enhances Viral Replication. Journal of Virology, 2005, 79, 3448-3458.	1.5	125
53	Involvement of the PA28γ-Dependent Pathway in Insulin Resistance Induced by Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1727-1735.	1.5	121
54	Role of Mouse and Human Autophagy Proteins in IFN-γ–Induced Cell-Autonomous Responses against <i>Toxoplasma gondii</i> . Journal of Immunology, 2014, 192, 3328-3335.	0.4	120

#	Article	IF	Citations
55	Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of pichinde arenavirus. Virus Research, 1985, 3, 101-114.	1.1	116
56	Essential Elements of the Capsid Protein for Self-Assembly into Empty Virus-Like Particles of Hepatitis E Virus. Journal of Virology, 2005, 79, 12999-13006.	1.5	115
57	Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes To Cells, 2000, 5, 571-581.	0.5	108
58	E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1174-1185.	1.5	108
59	Host Range of Human T-Cell Leukemia Virus Type I Analyzed by a Cell Fusion-Dependent Reporter Gene Activation Assay. Virology, 1999, 254, 235-244.	1.1	107
60	Involvement of Ceramide in the Propagation of Japanese Encephalitis Virus. Journal of Virology, 2010, 84, 2798-2807.	1.5	107
61	Expression of MicroRNA miR-122 Facilitates an Efficient Replication in Nonhepatic Cells upon Infection with Hepatitis C Virus. Journal of Virology, 2012, 86, 7918-7933.	1.5	107
62	Ifit1 Inhibits Japanese Encephalitis Virus Replication through Binding to 5′ Capped 2′-O Unmethylated RNA. Journal of Virology, 2013, 87, 9997-10003.	1.5	106
63	Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Reports, 2021, 35, 109014.	2.9	102
64	Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nature Communications, 2021, 12, 3802.	5.8	101
65	Steatosis and intrahepatic hepatitis C virus in chronic hepatitis. , 1999, 59, 141-145.		98
66	Intramembrane Processing by Signal Peptide Peptidase Regulates the Membrane Localization of Hepatitis C Virus Core Protein and Viral Propagation. Journal of Virology, 2008, 82, 8349-8361.	1.5	97
67	Virus Entry Is a Major Determinant of Cell Tropism of Edmonston and Wild-Type Strains of Measles Virus as Revealed by Vesicular Stomatitis Virus Pseudotypes Bearing Their Envelope Proteins. Journal of Virology, 2000, 74, 4139-4145.	1.5	93
68	Intramembrane Proteolysis and Endoplasmic Reticulum Retention of Hepatitis C Virus Core Protein. Journal of Virology, 2004, 78, 6370-6380.	1.5	93
69	Japanese Encephalitis Virus Core Protein Inhibits Stress Granule Formation through an Interaction with Caprin-1 and Facilitates Viral Propagation. Journal of Virology, 2013, 87, 489-502.	1.5	91
70	Human blood dendritic cell antigen 3 (BDCA3) ⁺ dendritic cells are a potent producer of interferon-local interferon in response to hepatitis C virus. Hepatology, 2013, 57, 1705-1715.	3.6	86
71	Expression of hepatitis C virus NS5B protein: Characterization of its RNA polymerase activity and RNA binding. Hepatology, 1999, 29, 1227-1235.	3.6	83
72	Establishment of a Novel Permissive Cell Line for the Propagation of Hepatitis C Virus by Expression of MicroRNA miR122. Journal of Virology, 2012, 86, 1382-1393.	1.5	83

#	Article	IF	Citations
73	Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene, 1999, 18, 1303-1312.	2.6	81
74	Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum. Cell Reports, 2016, 16, 2339-2347.	2.9	80
75	Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nature Communications, 2021, 12, 3726.	5.8	80
76	Baculovirus Induces Type I Interferon Production through Toll-Like Receptor-Dependent and -Independent Pathways in a Cell-Type-Specific Manner. Journal of Virology, 2009, 83, 7629-7640.	1.5	79
77	Role of the Endoplasmic Reticulum-associated Degradation (ERAD) Pathway in Degradation of Hepatitis C Virus Envelope Proteins and Production of Virus Particles. Journal of Biological Chemistry, 2011, 286, 37264-37273.	1.6	78
78	Replication-Competent Recombinant Vesicular Stomatitis Virus Encoding Hepatitis C Virus Envelope Proteins. Journal of Virology, 2007, 81, 8601-8612.	1.5	77
79	Ligand-Directed Gene Targeting to Mammalian Cells by Pseudotype Baculoviruses. Journal of Virology, 2005, 79, 3639-3652.	1.5	76
80	Arid5a regulates naive CD4+ T cell fate through selective stabilization of Stat3 mRNA. Journal of Experimental Medicine, 2016, 213, 605-619.	4.2	76
81	Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. Journal of Experimental Medicine, 2007, 204, 2233-2239.	4.2	73
82	Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles. PLoS Pathogens, 2014, 10, e1004534.	2.1	73
83	Dysfunction of Autophagy Participates in Vacuole Formation and Cell Death in Cells Replicating Hepatitis C Virus. Journal of Virology, 2011, 85, 13185-13194.	1.5	71
84	Kinase-interacting substrate screening is a novel method to identify kinase substrates. Journal of Cell Biology, 2015, 209, 895-912.	2.3	71
85	Lipoprotein Receptors Redundantly Participate in Entry of Hepatitis C Virus. PLoS Pathogens, 2016, 12, e1005610.	2.1	71
86	Hepatitis C virus core protein exerts an inhibitory effect on suppressor of cytokine signaling (SOCS)-1 gene expression. Journal of Hepatology, 2005, 43, 757-763.	1.8	70
87	Zinc-finger antiviral protein mediates retinoic acid inducible gene l–like receptor-independent antiviral response to murine leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12379-12384.	3.3	70
88	Nucleolar Protein B23 Interacts with Japanese Encephalitis Virus Core Protein and Participates in Viral Replication. Microbiology and Immunology, 2006, 50, 225-234.	0.7	68
89	Structure of hepatitis E viral particle. Virus Research, 2011, 161, 59-64.	1.1	65
90	Heterogeneous Nuclear Ribonucleoprotein A2 Participates in the Replication of Japanese Encephalitis Virus through an Interaction with Viral Proteins and RNA. Journal of Virology, 2011, 85, 10976-10988.	1.5	65

#	Article	IF	Citations
91	Baculovirus GP64-Mediated Entry into Mammalian Cells. Journal of Virology, 2012, 86, 2610-2620.	1.5	65
92	Association of Frabin with the Actin Cytoskeleton Is Essential for Microspike Formation through Activation of Cdc42 Small G Protein. Journal of Biological Chemistry, 1999, 274, 25197-25200.	1.6	64
93	Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochemical and Biophysical Research Communications, 2011, 416, 119-124.	1.0	63
94	Regulation of Apoptosis during Flavivirus Infection. Viruses, 2017, 9, 243.	1.5	63
95	An enzyme-linked immunosorbent assay for the measurement of human interleukin-6. Journal of Immunological Methods, 1990, 133, 279-284.	0.6	62
96	Domain-Specific Phosphorylation of Vimentin and Glial Fibrillary Acidic Protein by PKN. Biochemical and Biophysical Research Communications, 1997, 234, 621-625.	1.0	62
97	Colocalization of Ras and Ral on the membrane is required for Ras-dependent Ral activation through Ral GDP dissociation stimulator. Oncogene, 1997, 15, 2899-2907.	2.6	62
98	Acquisition of Complement Resistance through Incorporation of CD55/Decay-Accelerating Factor into Viral Particles Bearing Baculovirus GP64. Journal of Virology, 2010, 84, 3210-3219.	1.5	61
99	Full-length complementary DNA of hepatitis C virus genome from an infectious blood sample. Hepatology, 1998, 27, 621-627.	3.6	60
100	Spontaneous elimination of serum hepatitis C virus (HCV) RNA in chronic HCV carriers: A population-based cohort study. Journal of Medical Virology, 2003, 71, 56-61.	2.5	59
101	A Single-Amino-Acid Mutation in Hepatitis C Virus NS5A Disrupting FKBP8 Interaction Impairs Viral Replication. Journal of Virology, 2008, 82, 3480-3489.	1.5	59
102	Characterization of Ral GDP Dissociation Stimulator-like (RGL) Activities to Regulate c-fosPromoter and the GDP/GTP Exchange of Ral. Journal of Biological Chemistry, 1997, 272, 10483-10490.	1.6	58
103	Low Stimulatory Capacity of Lymphoid Dendritic Cells Expressing Hepatitis C Virus Genes. Biochemical and Biophysical Research Communications, 1998, 249, 90-95.	1.0	58
104	Establishment of strongly neutralizing monoclonal antibody to human interleukin-6 and its epitope analysis. Biochemical and Biophysical Research Communications, 1989, 165, 728-734.	1.0	57
105	Proteasomal Turnover of Hepatitis C Virus Core Protein Is Regulated by Two Distinct Mechanisms: a Ubiquitin-Dependent Mechanism and a Ubiquitin-Independent but PA28γ-Dependent Mechanism. Journal of Virology, 2009, 83, 2389-2392.	1.5	57
106	Hallmarks of Hepatitis C Virus in Equine Hepacivirus. Journal of Virology, 2014, 88, 13352-13366.	1.5	57
107	Semagacestat Is a Pseudo-Inhibitor of \hat{I}^3 -Secretase. Cell Reports, 2017, 21, 259-273.	2.9	56
108	Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses, 2018, 10, 510.	1.5	56

#	Article	IF	CITATIONS
109	The molecular biology of hepatitis C virus. Seminars in Virology, 1993, 4, 297-304.	4.1	55
110	MERS coronavirus $nsp1$ participates in an efficient propagation through a specific interaction with viral RNA. Virology, $2017, 511, 95-105$.	1.1	55
111	Processing and Functions of Hepatitis C Virus Proteins. Intervirology, 1999, 42, 145-152.	1.2	54
112	Rho-kinase Contributes to Sustained RhoA Activation through Phosphorylation of p190A RhoGAP. Journal of Biological Chemistry, 2009, 284, 5067-5076.	1.6	53
113	Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2681-2686.	3.3	52
114	Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag. Journal of Virology, 2018, 92, .	1.5	51
115	Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology, 2003, 38, 820-828.	3.6	50
116	Oligomerization of Hepatitis C Virus Core Protein Is Crucial for Interaction with the Cytoplasmic Domain of E1 Envelope Protein. Journal of Virology, 2006, 80, 11265-11273.	1.5	48
117	Host Innate Immune Responses Induced by Baculovirus in Mammals. Current Gene Therapy, 2010, 10, 226-231.	0.9	47
118	Signal Peptidase Complex Subunit 1 Participates in the Assembly of Hepatitis C Virus through an Interaction with E2 and NS2. PLoS Pathogens, 2013, 9, e1003589.	2.1	47
119	Specific Isoprenyl Group Linked to Transducin γ-Subunit Is a Determinant of Its Unique Signaling Properties among G-Proteinsâ€. Biochemistry, 1998, 37, 9843-9850.	1.2	46
120	Expression of Human Herpesvirus 6B rep within Infected Cells and Binding of Its Gene Product to the TATA-Binding Protein In Vitro and In Vivo. Journal of Virology, 2000, 74, 6096-6104.	1.5	46
121	Human Butyrate-Induced Transcript 1 Interacts with Hepatitis C Virus NS5A and Regulates Viral Replication. Journal of Virology, 2008, 82, 2631-2641.	1.5	46
122	Roles of Lipoproteins and Apolipoproteins in Particle Formation of Hepatitis C Virus. Trends in Microbiology, 2015, 23, 618-629.	3.5	46
123	A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity, 2021, 54, 2385-2398.e10.	6.6	46
124	Mother-to-child transmission of a hepatitis C virus variant with an insertional mutation in its hypervariable region. Journal of Hepatology, 1996, 25, 608-613.	1.8	45
125	Pathogenesis of lipid metabolism disorder in hepatitis C: Polyunsaturated fatty acids counteract lipid alterations induced by the core protein. Journal of Hepatology, 2011, 54, 432-438.	1.8	45
126	TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nature Communications, 2016, 7, 11379.	5.8	45

#	Article	IF	Citations
127	Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity. Journal of General Physiology, 2017, 149, 199-218.	0.9	45
128	Mechanisms of Hepatitis C Virus Infection. Antiviral Chemistry and Chemotherapy, 2003, 14, 285-297.	0.3	44
129	Production of Infectious Hepatitis C Virus by Using RNA Polymerase I-Mediated Transcription. Journal of Virology, 2010, 84, 5824-5835.	1.5	44
130	Network based analysis of hepatitis C virus Core and NS4B protein interactions. Molecular BioSystems, 2010, 6, 2539.	2.9	44
131	SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nature Aging, 2022, 2, 115-124.	5.3	43
132	Involvement of Creatine Kinase B in Hepatitis C Virus Genome Replication through Interaction with the Viral NS4A Protein. Journal of Virology, 2009, 83, 5137-5147.	1.5	42
133	Involvement of PA28γ in the propagation of hepatitis C virus. Hepatology, 2010, 52, 411-420.	3.6	42
134	Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide. Scientific Reports, 2015, 5, 17047.	1.6	42
135	Association of Membrane-Associated Guanylate Kinase-Interacting Protein-1 with Raf-1. Biochemical and Biophysical Research Communications, 2000, 270, 538-542.	1.0	41
136	Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture. Journal of Virology, 2017, 91, .	1.5	41
137	Identification of immunodominant hepatitis C virus (HCV)-specific cytotoxic T-cell epitopes by stimulation with endogenously synthesized HCV antigens. Hepatology, 2001, 33, 1533-1543.	3.6	40
138	Cochaperone Activity of Human Butyrate-Induced Transcript 1 Facilitates Hepatitis C Virus Replication through an Hsp90-Dependent Pathway. Journal of Virology, 2009, 83, 10427-10436.	1.5	39
139	Indoleamineâ€2,3â€dioxygenase as an effector and an indicator of protective immune responses in patients with acute hepatitis B. Hepatology, 2016, 63, 83-94.	3.6	38
140	Peripheral B Cells May Serve as a Reservoir for Persistent Hepatitis C Virus Infection. Journal of Innate Immunity, 2010, 2, 607-617.	1.8	37
141	Cell–cell fusion induced by reovirus FAST proteins enhances replication and pathogenicity of non-enveloped dsRNA viruses. PLoS Pathogens, 2019, 15, e1007675.	2.1	37
142	Structural proteins of hepatitis C virus. Trends in Microbiology, 1993, 1, 229-231.	3.5	36
143	Post-translational Modifications of Ras and Ral Are Important for the Action of Ral GDP Dissociation Stimulator. Journal of Biological Chemistry, 1996, 271, 19710-19716.	1.6	36
144	Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochemical and Biophysical Research Communications, 2006, 340, 200-208.	1.0	36

#	Article	IF	CITATIONS
145	Host factors involved in the replication of hepatitis C virus. Reviews in Medical Virology, 2007, 17, 343-354.	3.9	36
146	Development of Stable Rotavirus Reporter Expression Systems. Journal of Virology, 2019, 93, .	1.5	36
147	Improved serodiagnosis of non-A, non-B hepatitis by an assay detecting antibody to hepatitis C virus core antigen. Hepatology, 1992, 15, 391-394.	3. 6	35
148	Molecular Cloning of a Human Protein That Binds to the Retinoblastoma Protein and Chromosomal Mapping. Genomics, 1995, 27, 511-519.	1.3	34
149	Establishment of an infectious genotype 1b hepatitis C virus clone in human hepatocyte chimeric mice. Journal of General Virology, 2008, 89, 2108-2113.	1.3	34
150	Role of miR-122 and lipid metabolism in HCV infection. Journal of Gastroenterology, 2013, 48, 169-176.	2.3	34
151	Molecular Cloning of a Cyclin-like Protein Associated with Cyclin-Dependent Kinase 3 (cdk 3) in Vivo. Biochemical and Biophysical Research Communications, 2000, 273, 442-447.	1.0	33
152	CD44 Participates in IP-10 Induction in Cells in Which Hepatitis C Virus RNA Is Replicating, through an Interaction with Toll-Like Receptor 2 and Hyaluronan. Journal of Virology, 2012, 86, 6159-6170.	1.5	33
153	Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. Journal of Proteome Research, 2013, 12, 2537-2551.	1.8	33
154	Dysregulated Expression of the Nuclear Exosome Targeting Complex Component Rbm7 in Nonhematopoietic Cells Licenses the Development of Fibrosis. Immunity, 2020, 52, 542-556.e13.	6.6	33
155	Characterization of miR-122-independent propagation of HCV. PLoS Pathogens, 2017, 13, e1006374.	2.1	31
156	Peroxiredoxin 1, a Novel HBx-Interacting Protein, Interacts with Exosome Component 5 and Negatively Regulates Hepatitis B Virus (HBV) Propagation through Degradation of HBV RNA. Journal of Virology, 2019, 93, .	1.5	30
157	Binding of HSV-1 Glycoprotein K (gK) to Signal Peptide Peptidase (SPP) Is Required for Virus Infectivity. PLoS ONE, 2014, 9, e85360.	1.1	30
158	Procyanidin B1 Purified from <i>Cinnamomi Cortex</i> Suppresses Hepatitis C Virus Replication. Antiviral Chemistry and Chemotherapy, 2010, 20, 239-248.	0.3	29
159	Bone morphogenetic protein 4 provides cancer-supportive phenotypes to liver fibroblasts in patients with hepatocellular carcinoma. Journal of Gastroenterology, 2019, 54, 1007-1018.	2.3	29
160	Characterization of cephalosporinases from Bacteroides fragilis, Bacteroides thetaiotaomicron and Bacteroides vulgatus Journal of Antibiotics, 1983, 36, 76-85.	1.0	28
161	Processing of Capsid Protein by Cathepsin L Plays a Crucial Role in Replication of Japanese Encephalitis Virus in Neural and Macrophage Cells. Journal of Virology, 2007, 81, 8477-8487.	1.5	28
162	Hepatitis C virus core protein: Its coordinate roles with PA28γ in metabolic abnormality and carcinogenicity in the liver. International Journal of Biochemistry and Cell Biology, 2008, 40, 1437-1442.	1.2	28

#	Article	IF	CITATIONS
163	Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1598-1600.	1.0	28
164	Ca ²⁺ /S100 proteins regulate <scp>HCV</scp> virus <scp>NS</scp> 5Aâ€" <scp>FKBP</scp> 8/ <scp>FKBP</scp> 38 interaction and <scp>HCV</scp> virus <scp>RNA</scp> replication. Liver International, 2013, 33, 1008-1018.	1.9	28
165	Anti-HCV effect of Lentinula edodes mycelia solid culture extracts andÂlow-molecular-weight lignin. Biochemical and Biophysical Research Communications, 2015, 462, 52-57.	1.0	28
166	Infection with flaviviruses requires BCLXL for cell survival. PLoS Pathogens, 2018, 14, e1007299.	2.1	28
167	Analysis of the molecules involved in human T-cell leukaemia virus type 1 entry by a vesicular stomatitis virus pseudotype bearing its envelope glycoproteins. Journal of General Virology, 2001, 82, 821-830.	1.3	28
168	Suppression of Interferon-Induced Antiviral Activity in Cells Expressing Hepatitis C Virus Proteins. Journal of Interferon and Cytokine Research, 2000, 20, 1111-1120.	0.5	27
169	Diverging Effects of Human Recombinant Anti-Hepatitis C Virus (HCV) Antibody Fragments Derived from a Single Patient on the Infectivity of a Vesicular Stomatitis Virus/HCV Pseudotype. Journal of Virology, 2002, 76, 11775-11779.	1.5	27
170	Concanavalin a affinity chromatography for efficient baculovirus purification. Biotechnology Progress, 2009, 25, 1669-1677.	1.3	27
171	Trans-complemented hepatitis C virus particles as a versatile tool for study of virus assembly and infection. Virology, 2012, 432, 29-38.	1.1	27
172	Hepatocyte Factor JMJD5 Regulates Hepatitis B Virus Replication through Interaction with HBx. Journal of Virology, 2016, 90, 3530-3542.	1.5	27
173	Human VAP-C Negatively Regulates Hepatitis C Virus Propagation. Journal of Virology, 2009, 83, 7959-7969.	1.5	26
174	Animal models for hepatitis C and related liver disease. Hepatology Research, 2010, 40, 69-82.	1.8	26
175	Innate Immune Response Induced by Baculovirus Attenuates Transgene Expression in Mammalian Cells. Journal of Virology, 2014, 88, 2157-2167.	1.5	26
176	SARS-CoV-2-induced humoral immunity through B cell epitope analysis in COVID-19 infected individuals. Scientific Reports, 2021, 11, 5934.	1.6	26
177	Expression profiling of liver cell lines expressing entire or parts of hepatitis C virus open reading frame. Hepatology, 2002, 36, 1431-1438.	3.6	26
178	Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein $\parallel f \parallel $	2.1	26
179	COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
180	A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Communications Biology, 2022, 5, .	2.0	26

#	Article	IF	CITATIONS
181	Dvl regulates endo- and exocytotic processes through binding to synaptotagmin. Genes To Cells, 2007, 12, 49-61.	0.5	25
182	Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation. Antiviral Research, 2016, 133, 156-164.	1.9	25
183	SUBCELLULAR LOCALIZATION OF HEPATITIS C VIRUS STRUCTURAL PROTEINS IN THE LIVER OF TRANSGENIC MICE. Japanese Journal of Medical Science and Biology, 1997, 50, 169-177.	0.4	24
184	Reevaluation of host ranges of feline leukemia virus subgroups. Microbes and Infection, 2003, 5, 947-950.	1.0	23
185	Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae. PLoS Pathogens, 2017, 13, e1006475.	2.1	23
186	<i>In Vivo</i> Dynamics of Reporter <i>Flaviviridae</i> Viruses. Journal of Virology, 2019, 93, .	1.5	22
187	Site-directed mutagenesis of His-42, His-188 and Lys-263 of human aldose reductase. Biochemical and Biophysical Research Communications, 1992, 183, 327-333.	1.0	21
188	Cell-binding properties of the envelope proteins of porcine endogenous retroviruses. Microbes and Infection, 2005, 7, 658-665.	1.0	21
189	Alternative endocytosis pathway for productive entry of hepatitis C virus. Journal of General Virology, 2014, 95, 2658-2667.	1.3	21
190	The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses. Cell Reports, 2017, 20, 2944-2954.	2.9	21
191	Infection of HepG2 cells with recombinant adenovirus encoding the HCV core protein induces p21WAF1 down-regulation – effect of transforming growth factor β. Journal of Hepatology, 2002, 37, 486-492.	1.8	20
192	Integration of the 5' end of the retrotransposon, R2Bm, can be complemented by homologous recombination. Nucleic Acids Research, 2004, 32, 1555-1565.	6.5	20
193	<i>In Vivo</i> Live Imaging of Oncolytic Mammalian Orthoreovirus Expressing NanoLuc Luciferase in Tumor Xenograft Mice. Journal of Virology, 2019, 93, .	1.5	20
194	Identification of Basal Promoter and Enhancer Elements in an Untranslated Region of the TT Virus Genome. Journal of Virology, 2004, 78, 10820-10824.	1.5	19
195	Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Scientific Reports, 2017, 7, 6122.	1.6	19
196	Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. Journal of Virology, 2019, 93, .	1,5	19
197	Role of zinc-finger anti-viral protein in host defense against Sindbis virus. International Immunology, 2015, 27, 357-364.	1.8	18
198	CD14 ⁺ monocyteâ€derived galectinâ€9 induces natural killer cell cytotoxicity in chronic hepatitis C. Hepatology, 2017, 65, 18-31.	3.6	18

#	Article	IF	CITATIONS
199	CXCR4 regulates Plasmodium development in mouse and human hepatocytes. Journal of Experimental Medicine, 2019, 216, 1733-1748.	4.2	18
200	Characterization of rabies virus glycoprotein expressed by recombinant baculovirus. Virus Research, 1992, 25, 1-13.	1.1	17
201	ik3-1/Cables is a substrate for cyclin-dependent kinase 3 (cdk 3). FEBS Journal, 2001, 268, 6076-6082.	0.2	17
202	USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. Journal of Virology, 2019, 93, .	1.5	17
203	Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses. Journal of Experimental Medicine, 2021, 218, .	4.2	17
204	Novel Permissive Cell Lines for Complete Propagation of Hepatitis C Virus. Journal of Virology, 2014, 88, 5578-5594.	1.5	16
205	Norovirus transmission mediated by asymptomatic family members in households. PLoS ONE, 2020, 15, e0236502.	1.1	16
206	Seroepidemiological survey of lymphocytic choriomeningitis virus in wild house mouse(Mus) Tj ETQq0 0 0 rgBT /	Overlock	10 <u>Tf</u> 50 462 ⁻
207	Human Cathelicidin Compensates for the Role of Apolipoproteins in Hepatitis C Virus Infectious Particle Formation. Journal of Virology, 2016, 90, 8464-8477.	1.5	15
208	Novel anti-flavivirus drugs targeting the nucleolar distribution of core protein. Virology, 2020, 541, 41-51.	1.1	15
209	ISGylation of Hepatitis C Virus NS5A Protein Promotes Viral RNA Replication via Recruitment of Cyclophilin A. Journal of Virology, 2020, 94, .	1.5	15
210	Evaluation systems for anti-HCV drugs. Advanced Drug Delivery Reviews, 2007, 59, 1213-1221.	6.6	14
211	Involvement of FKBP6 in hepatitis C virus replication. Scientific Reports, 2015, 5, 16699.	1.6	14
212	Lethal murine infection model for human respiratory disease-associated Pteropine orthoreovirus. Virology, 2018, 514, 57-65.	1.1	14
213	Various miRNAs compensate the role of miR-122 on HCV replication. PLoS Pathogens, 2020, 16, e1008308.	2.1	14
214	Induction of selective autophagy in cells replicating hepatitis C virus genome. Journal of General Virology, 2018, 99, 1643-1657.	1.3	14
215	Cell Fusion Activity of Hepatitis C Virus Envelope Proteins. Journal of Virology, 2000, 74, 5066-5074.	1.5	14
216	Sensitivity to human serum of gammaretroviruses produced from pig endothelial cells transduced with glycosyltransferase genes. Xenotransplantation, 2003, 10, 562-568.	1.6	13

#	Article	IF	Citations
217	Proteomic Analysis of Hepatitis C Virus (HCV) Core Protein Transfection and Host Regulator PA28γ Knockout in HCV Pathogenesis: A Network-Based Study. Journal of Proteome Research, 2012, 11, 3664-3679.	1.8	13
218	Novel sex-dependent differentially methylated regions are demethylated in adult male mouse livers. Biochemical and Biophysical Research Communications, 2015, 462, 332-338.	1.0	13
219	Establishment of a Cell Culture Model Permissive for Infection by Hepatitis B and C Viruses. Hepatology Communications, 2021, 5, 634-649.	2.0	13
220	Isolation of Lymphocytic Choriomeningitis Virus from Wild House Mice (Mus musculus) in Osaka Port, Japan Journal of Veterinary Medical Science, 1991, 53, 889-892.	0.3	12
221	GDP/GTP exchange reaction-stimulating activity of Rabphilin-3A forRab3A small GTP-binding protein. FEBS Letters, 1994, 353, 67-70.	1.3	12
222	Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. Journal of Biological Chemistry, 2020, 295, 7941-7957.	1.6	12
223	DETECTION OF ANTIBODY AGAINST HEMORRHAGIC FEVER WITH RENAL SYNDROME (HFRS) VIRUS IN SERA OF HOUSE RATS CAPTURED IN PORT AREAS OF JAPAN. Japanese Journal of Medical Science and Biology, 1983, 36, 55-57.	0.4	11
224	Expression of ILâ€6/IFNâ€B ₂ in a Baculovirus System and Its Biological Function. Annals of the New York Academy of Sciences, 1989, 557, 122-129.	1.8	11
225	Discovery of peroxisome proliferator–activated receptor α (PPARα) activators with a ligand-screening system using a human PPARα-expressing cell line. Journal of Biological Chemistry, 2018, 293, 10333-10343.	1.6	11
226	Characterization of human pegivirus infection in liver transplantation recipients. Journal of Medical Virology, 2019, 91, 2093-2100.	2.5	11
227	Upregulation of nuclear PA28 \hat{I}^3 expression in cirrhosis and hepatocellular carcinoma. Experimental and Therapeutic Medicine, 2012, 3, 379-385.	0.8	10
228	Longâ€term viral shedding and viral genome mutation in norovirus infection. Journal of Medical Virology, 2015, 87, 1872-1880.	2.5	10
229	CEACAM1 Is Associated With the Suppression of Natural Killer Cell Function in Patients With Chronic Hepatitis C. Hepatology Communications, 2018, 2, 1247-1258.	2.0	10
230	Generation of Genetically RGD $\ddot{l}f$ 1-Modified Oncolytic Reovirus That Enhances JAM-A-Independent Infection of Tumor Cells. Journal of Virology, 2020, 94, .	1.5	10
231	A novel occludin-targeting monoclonal antibody prevents hepatitis C virus infection in vitro. Oncotarget, 2018, 9, 16588-16598.	0.8	10
232	Tacrolimus Ameliorates Metabolic Disturbance and Oxidative Stress Caused by Hepatitis C Virus Core Protein. American Journal of Pathology, 2009, 175, 1515-1524.	1.9	9
233	Intracellular delivery of serum-derived hepatitis C virus. Microbes and Infection, 2011, 13, 405-412.	1.0	9
234	Detection of hepatitis C virus by single-step hairpin primer RT-PCR. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 394-396.	1.0	9

#	Article	IF	CITATIONS
235	Unconjugated interferonâ€stimulated gene 15 specifically interacts with the hepatitis C virus NS5A protein via domain I. Microbiology and Immunology, 2017, 61, 287-292.	0.7	9
236	Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens, 2020, 9, 188.	1.2	9
237	Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation. Antiviral Research, 2021, 186, 104999.	1.9	9
238	Preclinical study of a DNA vaccine targeting SARS-CoV-2. Current Research in Translational Medicine, 2022, 70, 103348.	1.2	9
239	Establishment of an indicator cell system for hepatitis C virus. Microbiology and Immunology, 2010, 54, 206-220.	0.7	8
240	Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10782-E10791.	3.3	8
241	Roles of the $5\hat{a} \in \mathbb{R}^2$ Untranslated Region of Nonprimate Hepacivirus in Translation Initiation and Viral Replication. Journal of Virology, 2018, 92, .	1.5	8
242	Rimonabant suppresses RNA transcription of hepatitis B virus by inhibiting hepatocyte nuclear factor $4\hat{l}\pm$. Microbiology and Immunology, 2020, 64, 345-355.	0.7	8
243	Induction of HOX Genes by Hepatitis C Virus Infection via Impairment of Histone H2A Monoubiquitination. Journal of Virology, 2021, 95, .	1.5	8
244	Isolation and Identification of Paramyxoviruses from Japanese Buntings (Emberiza spodocephala) and Ducks (Anas crecca and Anas penelope). Nihon Juigaku Zasshi, 1982, 44, 317-321,323.	0.3	7
245	Evidence for a polytopic form of the E1 envelope glycoprotein of Hepatitis C virus. Virus Research, 2004, 105, 47-57.	1.1	7
246	Reduced-Dose Telaprevir-Based Triple Antiviral Therapy for Recurrent Hepatitis C After Living Donor Liver Transplantation. Transplantation, 2014, 98, 994-999.	0.5	7
247	Production of hepatitis E virus-like particles presenting multiple foreign epitopes by co-infection of recombinant baculoviruses. Scientific Reports, 2016, 6, 21638.	1.6	7
248	Cell surface N-glycan alteration in HepAD38 cell lines expressing Hepatitis B virus. Virus Research, 2017, 238, 101-109.	1.1	7
249	Oenothein B, dimeric hydrolysable tannin inhibiting HCV invasion from Oenothera erythrosepala. Journal of Natural Medicines, 2019, 73, 67-75.	1.1	7
250	M Segment-Based Minigenome System of Severe Fever with Thrombocytopenia Syndrome Virus as a Tool for Antiviral Drug Screening. Viruses, 2021, 13, 1061.	1.5	7
251	HERC5 E3 ligase mediates ISGylation of hepatitis B virus X protein to promote viral replication. Journal of General Virology, 2021, 102, .	1.3	7
252	Preparation and Characterization of Human Rheumatoid Arthritic Synovial Fluid Phospholipase A2 Produced by Recombinant Baculovirus-Infected Insect Cells. Journal of Biochemistry, 1994, 116, 81-87.	0.9	6

#	Article	IF	Citations
253	Production of N-Lauroylated G Protein Â-Subunit in Sf9 Insect Cells: The Type of N-Acyl Group of GÂ Influences G Protein-Mediated Signal Transduction. Journal of Biochemistry, 2004, 135, 319-329.	0.9	6
254	Suppression of optineurin impairs the progression of hepatocellular carcinoma through regulating mitophagy. Cancer Medicine, 2021, 10, 1501-1514.	1.3	6
255	Hepatitis C virus modulates signal peptide peptidase to alter host protein processing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	6
256	Elimination of Hepatitis C Virus from Hepatocytes by a Selective Activation of Therapeutic Molecules. PLoS ONE, 2011, 6, e15967.	1.1	6
257	Molecular Cloning and Expression of Cynomolgus Monkey Interleukin-2 cDNA by the Recombinant Baculovirus System. International Archives of Allergy and Immunology, 1997, 113, 417-423.	0.9	5
258	Expression of influenza neuraminidase in CHO-K1 cells. International Congress Series, 2004, 1263, 568-572.	0.2	5
259	Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity. Scientific Reports, 2017, 7, 45228.	1.6	5
260	Virucidal Effect of Acetic Acid and Vinegar on Severe Acute Respiratory Syndrome Coronavirus 2. Food Science and Technology Research, 2021, 27, 681-684.	0.3	5
261	Neo-virology: The raison d'etre of viruses. Virus Research, 2019, 274, 197751.	1.1	4
262	Development of hepatoma-derived, bidirectional oval-like cells as a model to study host interactions with hepatitis C virus during differentiation. Oncotarget, 2017, 8, 53899-53915.	0.8	4
263	Secretory glycoprotein NS1 plays a crucial role in the particle formation of flaviviruses. PLoS Pathogens, 2022, 18, e1010593.	2.1	4
264	A polypeptide encoded within the murine AIDS defective virus stimulates primary proliferation of CD8+T-cells. Immunology Letters, 1997, 55, 93-98.	1.1	3
265	Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver. PLoS ONE, 2017, 12, e0170461.	1.1	3
266	Spread of genetically similar noroviruses in Bangkok, Thailand, through symptomatic and asymptomatic individuals. Heliyon, 2021, 7, e08250.	1.4	3
267	Expression of the Sendai Virus Fusion Protein and the Hemagglutinin-neuraminidase Protein Using a Baculovirus Vector. Bioscience, Biotechnology and Biochemistry, 1993, 57, 566-570.	0.6	2
268	Comparison of serum sensitivities of pseudotype retroviruses produced from newly established packaging cell lines of human and feline origins. Virus Research, 2004, 99, 89-93.	1.1	2
269	Roles of secretory glycoproteins in particle formation of Flaviviridae viruses. Microbiology and Immunology, 2019, 63, 401-406.	0.7	2
270	N-terminal HCV core protein fragment decreases 20S proteasome activity in the presence of PA28γ. Biochemical and Biophysical Research Communications, 2019, 509, 590-595.	1.0	2

#	Article	IF	CITATIONS
271	Deneddylation by SENP8 restricts hepatitis B virus propagation. Microbiology and Immunology, 2021, 65, 125-135.	0.7	2
272	Tightly Regulated Expression of Autographa californica Multicapsid Nucleopolyhedrovirus Immediate Early Genes Emerges from Their Interactions and Possible Collective Behaviors. PLoS ONE, 2015, 10, e0119580.	1.1	2
273	The nonstructural p17 protein of a fusogenic bat-borne reovirus regulates viral replication in virus species- and host-specific manners. PLoS Pathogens, 2022, 18, e1010553.	2.1	2
274	Evaluation of viral contamination in a baculovirus expression system. Microbiology and Immunology, 2018, 62, 200-204.	0.7	1
275	Novel miRNA biomarkers for genotoxicity screening in mouse. Toxicology, 2018, 404-405, 68-75.	2.0	1
276	St6gal1 knockdown alters HBV life cycle in HepAD38 cells. Biochemical and Biophysical Research Communications, 2018, 503, 1841-1847.	1.0	1
277	Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual. Infection, Genetics and Evolution, 2020, 86, 104612.	1.0	1
278	Law and Bureaucracy in Modern Japan. Stanford Law Review, 1989, 41, 1627.	3.0	0
279	Genotyping of hepatitis C virus by a simple ELISA method. Clinical and Diagnostic Virology, 1995, 3, 105-109.	1.8	O
280	Reply to Cheng et al.: COVID-19 induces lower extent of cytokines, but damages vascular endothelium by IL-6 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2105040118.	3.3	0
281	ATF6b is a host cellular target of theToxoplasma gondiivirulence factor ROP18. Journal of Cell Biology, 2011, 193, i15-i15.	2.3	О