Beheshteh Sohrabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960285/publications.pdf Version: 2024-02-01

REHESHTEH SOHDARL

#	Article	IF	CITATIONS
1	Molecular Interactions of Cationic and Anionic Surfactants in Mixed Monolayers and Aggregates. Journal of Physical Chemistry B, 2008, 112, 14869-14876.	2.6	145
2	Superhydrophobicity: advanced biological and biomedical applications. Biomaterials Science, 2019, 7, 3110-3137.	5.4	81
3	Dispersion of Carbon Nanotubes Using Mixed Surfactants: Experimental and Molecular Dynamics Simulation Studies. Journal of Physical Chemistry B, 2014, 118, 3094-3103.	2.6	79
4	Water treatment: functional nanomaterials and applications from adsorption to photodegradation. Materials Today Chemistry, 2020, 16, 100262.	3.5	77
5	Determination of the physico-chemical parameters and aggregation number of surfactant in micelles in binary alcohol–water mixtures. Journal of Molecular Liquids, 2008, 137, 74-79.	4.9	71
6	Electrolyte effect on mixed micelle and interfacial properties of binary mixtures of cationic and nonionic surfactants. Journal of Colloid and Interface Science, 2008, 318, 449-456.	9.4	69
7	Dispersion of graphene using surfactant mixtures: Experimental and molecular dynamics simulation studies. Applied Surface Science, 2019, 464, 440-450.	6.1	58
8	The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution. Dyes and Pigments, 2012, 95, 768-775.	3.7	50
9	Ubiquitin–proteasome system and the role of its inhibitors in cancer therapy. Open Biology, 2021, 11, 200390.	3.6	46
10	Effect of ethylene glycol on micellization and surface properties of Gemini surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 87-93.	4.7	44
11	Thermodynamic studies of mixed ionic/nonionic surfactant systems. Journal of Colloid and Interface Science, 2004, 276, 197-207.	9.4	41
12	Investigation of interaction parameters in mixed micelle using pulsed field gradient NMR spectroscopy. Journal of Colloid and Interface Science, 2005, 285, 351-359.	9.4	35
13	A New Model to Study the Phase Transition from Microstructures to Nanostructures in Ionic/Ionic Surfactants Mixture. Journal of Physical Chemistry B, 2007, 111, 10069-10078.	2.6	34
14	Synthesis of hydroxyapatite particles in catanionic mixed surfactants template. Materials Chemistry and Physics, 2011, 131, 132-135.	4.0	30
15	Supercapacitive properties of coiled carbon nanotubes directly grown on nickel nanowires. Journal of Materials Chemistry A, 2014, 2, 17446-17453.	10.3	30
16	Synergistic effect of molybdenum coating and SDS surfactant on corrosion inhibition of mild steel in presence of 3.5% NaCl. Corrosion Science, 2018, 136, 393-401.	6.6	30
17	Role of surfactant structure in aqueous dispersions of carbon nanotubes. Fluid Phase Equilibria, 2015, 394, 19-28.	2.5	29
18	Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes. Applied Surface Science, 2018, 435, 1322-1328.	6.1	29

Beheshteh Sohrabi

#	Article	lF	CITATIONS
19	Study of the electrostatic and steric contributions to the free energy of ionic/nonionic mixed micellization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244, 187-196.	4.7	28
20	Highly transparent, flexible and hydrophilic ZnS thin films prepared by a facile and environmentally friendly chemical bath deposition method. Thin Solid Films, 2018, 651, 97-110.	1.8	27
21	Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent. Applied Surface Science, 2015, 341, 109-119.	6.1	26
22	The study of polymer–surfactant interaction in catanionic surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 890-897.	4.7	25
23	Self-assembled catanionic surfactant mixtures in aqueous/ionic liquid systems. Journal of Molecular Liquids, 2015, 211, 754-760.	4.9	21
24	p -toluenesulfonic acid-catalyzed synthesis of polysubstituted quinolines via FriedlÃ ¤ der reaction under ball-milling conditions at room temperature and theoretical study on the mechanism using a density functional theory method. Journal of Physical Organic Chemistry, 2014, 27, 589-596.	1.9	18
25	Effect of electron-donating and -withdrawing substitutions in naphthoquinone sensitizers: The structure engineering of dyes for DSSCs. Journal of Molecular Structure, 2018, 1167, 274-279.	3.6	18
26	Role of Interaction Energies in the Behavior of Mixed Surfactant Systems: A Lattice Monte Carlo Simulation. Langmuir, 2010, 26, 13786-13796.	3.5	17
27	Selective separation behavior of graphene flakes in interaction with halide anions in the presence of an external electric field. Physical Chemistry Chemical Physics, 2016, 18, 7293-7299.	2.8	16
28	Self-assembly of cationic surfactants on the carbon nanotube surface: insights from molecular dynamics simulations. Journal of Molecular Modeling, 2013, 19, 4319-4335.	1.8	15
29	Investigation of DNA–cationic bolaform surfactants interaction with different spacer length. Colloids and Surfaces B: Biointerfaces, 2013, 110, 29-35.	5.0	15
30	Naphthoquinone derivative-based dye for dye-sensitized solar cells: experimental and computational aspects. Materials Research Express, 2019, 6, 085537.	1.6	15
31	Electrolyte effect on adsorption and the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture. Journal of Colloid and Interface Science, 2011, 361, 159-169.	9.4	14
32	The study of glass superhydrophobicity by modified SiO2-hexadecyltrimethoxysilane (SiO2-m-HDTMS) nanoparticles and mixture of surfactants. Progress in Organic Coatings, 2019, 131, 73-81.	3.9	14
33	Cobalt complex dye as a novel sensitizer in dye sensitized solar cells. Materials Research Express, 2019, 6, 125536.	1.6	11
34	Manipulating electronic structure of graphene for producing ferromagnetic graphene particles by Leidenfrost effect-based method. Scientific Reports, 2020, 10, 6874.	3.3	11
35	Study of thermodynamic parameters in amphiphilic systems by lattice Monte Carlo: effect of tails and heads. Theoretical Chemistry Accounts, 2006, 115, 1-17.	1.4	10
36	Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation. Journal of Physical Chemistry A, 2018, 122, 3873-3885.	2.5	10

Beheshteh Sohrabi

#	Article	IF	CITATIONS
37	pH-sensitive organic diimide materials-based superhydrophobic surface for oil-water separation applications. Materials Research Express, 2019, 6, 125112.	1.6	10
38	The extracted saponin from ginseng as an efficient renewable biosurfactant for desorption enhancement of phenanthrene and nickel. International Journal of Environmental Science and Technology, 2019, 16, 181-190.	3.5	8
39	Observation of magnetic domains in graphene magnetized by controlling temperature, strain and magnetic field. Scientific Reports, 2020, 10, 21325.	3.3	8
40	Further Study on the Micellization of a Symmetric Amphiphile Using the Monte Carlo Technique. Bulletin of the Chemical Society of Japan, 2006, 79, 1355-1361.	3.2	6
41	Investigation of the mixing behavior of surfactants by lattice Monte Carlo simulation. Journal of Molecular Modeling, 2010, 16, 1499-1508.	1.8	6
42	Lattice Monte Carlo simulation of dilute ionic surfactants. Journal of Molecular Liquids, 2008, 138, 147-154.	4.9	5
43	Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters. Journal of Molecular Modeling, 2012, 18, 929-936.	1.8	5
44	Growth of the cobalt nanowires using AC electrochemical deposition on anodized aluminum oxide templates. Journal of Nanostructure in Chemistry, 2014, 4, 1.	9.1	5
45	Effect of isoelectric point on cheese whey wastewater treatment using a microbial electrochemical system. Bioelectrochemistry, 2019, 130, 107200.	4.6	5
46	Local temperature <i>versus</i> system temperature in a simulation experiment containing water molecules. Physical Chemistry Chemical Physics, 2019, 21, 12961-12967.	2.8	4
47	Adsorption and micellar phase properties of anionic surfactant in the presence of electrolyte and oil at different temperatures. Fluid Phase Equilibria, 2013, 337, 370-378.	2.5	3
48	Electrolyte-cosolvent effects on the properties of micellar and monolayer phases in the cationic-rich region of catanionic mixture: The phase transition between microstructures and nanostructures. Fluid Phase Equilibria, 2014, 375, 168-175.	2.5	3
49	Self-assembly of the surfactant mixtures on graphene in the presence of electrolyte: a molecular simulation study. Adsorption, 2021, 27, 69-79.	3.0	3
50	The Hydrophobicity of Doped Graphene by the Fourth Group Elements of the Periodic Table: Theoretical and Computational Studies. Journal of Physical Chemistry C, 2019, 123, 24837-24845.	3.1	2
51	Investigation of ion-pairing phenomenon in BaF2 aqueous solution: Experimental and theoretical studies. Journal of Fluorine Chemistry, 2010, 131, 975-981.	1.7	1
52	The anionic conventional surfactants effect on the nanostructures and microstructures properties in cationic Gemini surfactants aqueous solution. , 2010, , .		1
53	Computational study of the CO elimination reaction of cyclopropylmethoxy carbenes. Journal of Molecular Liquids, 2013, 182, 48-56.	4.9	1
54	The natural non-ionic magnetic surfactants: nanomicellar and interfacial properties. Journal of Nanostructure in Chemistry, 0, , 1.	9.1	1

#	Article	IF	CITATIONS
55	The role of polarization effect on the hydrophobicity of graphene and graphene-based devices: Theoretical and computational studies. Computational Materials Science, 2021, 200, 110781.	3.0	0