
MichaÅ, Obuchowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/196018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of glucose on swarming and quorum sensing of Dickeya solani. PLoS ONE, 2022, 17, e0263124.	1.1	4
2	Complete genome sequence of the newly discovered temperate Clostridioides difficile bacteriophage phiCDKH01 of the family Siphoviridae. Archives of Virology, 2021, 166, 2305-2310.	0.9	8
3	Lipidation of Temporin-1CEb Derivatives as a Tool for Activity Improvement, Pros and Cons of the Approach. International Journal of Molecular Sciences, 2021, 22, 6679.	1.8	2
4	Biological activity of 3-(2-benzoxazol-5-yl)alanine derivatives. Amino Acids, 2021, 53, 1257-1268.	1.2	4
5	The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS ONE, 2019, 14, e0220636.	1.1	49
6	Upregulation of MUC5AC production and deposition of LEWIS determinants by HELICOBACTER PYLORI facilitate gastric tissue colonization and the maintenance of infection. Journal of Biomedical Science, 2019, 26, 23.	2.6	24
7	IL-1 Fragment Modulates Immune Response Elicited by Recombinant Bacillus subtilis Spores Presenting an Antigen/Adjuvant Chimeric Protein. Molecular Biotechnology, 2018, 60, 810-819.	1.3	9
8	Positions 299 and 302 of the GerAA subunit are important for function of the GerA spore germination receptor in Bacillus subtilis. PLoS ONE, 2018, 13, e0198561.	1.1	7
9	The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microbial Cell Factories, 2017, 16, 151.	1.9	13
10	The choice of anchoring protein influences interaction of recombinant Bacillus spores with the immune system. Acta Biochimica Polonica, 2017, 64, 239-244.	0.3	4
11	Helicobacter pylori antigens, acetylsalicylic acid, LDL and 7-ketocholesterol - their potential role in destabilizing the gastric epithelial cell barrier. An in vitro model of Kato III cells Acta Biochimica Polonica, 2016, 63, 145-152.	0.3	8
12	When Genome-Based Approach Meets the "Old but Good― Revealing Genes Involved in the Antibacterial Activity of Pseudomonas sp. P482 against Soft Rot Pathogens. Frontiers in Microbiology, 2016, 7, 782.	1.5	27
13	Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis. PLoS ONE, 2016, 11, e0167225.	1.1	10
14	Impact of <i>Helicobacter pylori</i> on the healing process of the gastric barrier. World Journal of Gastroenterology, 2016, 22, 7536.	1.4	41
15	Immunoregulation of antigen presenting and secretory functions of monocytic cells by Helicobacter pylori antigens in relation to impairment of lymphocyte expansion. Acta Biochimica Polonica, 2015, 62, 641-650.	0.3	20
16	Recombinant Bacillus subtilis Spores Elicit Th1/Th17-Polarized Immune Response in a Murine Model of Helicobacter pylori Vaccination. Molecular Biotechnology, 2015, 57, 685-691.	1.3	19
17	Synthesis and Evaluation of Biological Activity of Antimicrobial – Pro-Proliferative Peptide Conjugates. PLoS ONE, 2015, 10, e0140377.	1.1	19
18	A system of vectors for Bacillus subtilis spore surface display. Microbial Cell Factories, 2014, 13, 30.	1.9	41

МіснаÅ, Овисноwsкі

#	Article	IF	CITATIONS
19	Mucosal Adjuvant Activity of IL-2 Presenting Spores of Bacillus subtilis in a Murine Model of Helicobacter pylori Vaccination. PLoS ONE, 2014, 9, e95187.	1.1	15
20	Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst. Archives of Microbiology, 2013, 195, 197-202.	1.0	13
21	New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microbial Cell Factories, 2013, 12, 22.	1.9	42
22	The Tandem Mannich–Electrophilic Amination Reaction: a Versatile Platform for Fluorescent Probing and Labeling. Chemistry - A European Journal, 2013, 19, 11531-11535.	1.7	15
23	A genome-wide transcriptional profiling of sporulating Bacillus subtilis strain lacking PrpE protein phosphatase. Molecular Genetics and Genomics, 2013, 288, 469-481.	1.0	Ο
24	Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. Journal of Medical Microbiology, 2013, 62, 1379-1385.	0.7	40
25	Genome Sequence of Bacillus subtilis MB73/2, a Soil Isolate Inhibiting the Growth of Plant Pathogens <i>Dickeya</i> spp. and Rhizoctonia solani. Genome Announcements, 2013, 1, .	0.8	2
26	Colonization of Potato Rhizosphere by GFP-Tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 Shown on Large Sections of Roots Using Enrichment Sample Preparation and Confocal Laser Scanning Microscopy. Sensors, 2012, 12, 17608-17619.	2.1	48
27	ATP and its N6-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis. Journal of Molecular Modeling, 2011, 17, 1081-1090.	0.8	2
28	Importance ofeps genes fromBacillus subtilis in biofilm formation and swarming. Journal of Applied Genetics, 2010, 51, 369-381.	1.0	39
29	Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Journal of Computer-Aided Molecular Design, 2010, 24, 733-747.	1.3	7
30	Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microbial Cell Factories, 2010, 9, 2.	1.9	66
31	Correctness of Protein Identifications ofBacillus subtilisProteome with the Indication on Potential False Positive Peptides Supported by Predictions of Their Retention Times. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	5
32	Proteomic analysis of small acid soluble proteins in the spore core of Bacillus subtilis ΔprpE and 168 strains with predictions of peptides liquid chromatography retention times as an additional tool in protein identification. Proteome Science, 2010, 8, 60.	0.7	1
33	CpgA, EF-Tu and the stressosome protein YezB are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/PrpC, in Bacillus subtilis. Microbiology (United Kingdom), 2009, 155, 932-943.	0.7	54
34	Theoretical Modeling of PrkCc, Serine–Threonine Protein Kinase Intracellular Domain, Complexed with ATP Derivatives. QSAR and Combinatorial Science, 2008, 27, 437-444.	1.5	4
35	Influence of the Ïf ^B Stress Factor and <i>yxaB</i> , the Gene for a Putative Exopolysaccharide Synthase under Ïf ^B Control, on Biofilm Formation. Journal of Bacteriology, 2008, 190, 3546-3556.	1.0	15
36	Expression of Genes Coding for GerA and GerK Spore Germination Receptors Is Dependent on the Protein Phosphatase PrpE. Journal of Bacteriology, 2006, 188, 4373-4383.	1.0	12

МіснаÅ, Овисноwsкі

#	Article	IF	CITATIONS
37	Mapping of a transcription promoter located inside the priA gene of the Bacillus subtilis chromosome. Acta Biochimica Polonica, 2006, 53, 497-505.	0.3	4
38	Transcription in the prpC-yloQ region in Bacillus subtilis. Archives of Microbiology, 2005, 183, 421-430.	1.0	11
39	Comparative Analysis of the Development of Swarming Communities of Bacillus subtilis 168 and a Natural Wild Type: Critical Effects of Surfactin and the Composition of the Medium. Journal of Bacteriology, 2005, 187, 65-76.	1.0	114
40	Branched swarming patterns on a synthetic medium formed by wild-type Bacillus subtilis strain 3610: detection of different cellular morphologies and constellations of cells as the complex architecture develops. Microbiology (United Kingdom), 2004, 150, 1839-1849.	0.7	73
41	Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology, 2003, 313, 622-628.	1.1	25
42	Mass Spectrometry and Site-directed Mutagenesis Identify Several Autophosphorylated Residues Required for the Activity of PrkC, a Ser/Thr Kinase from Bacillus subtilis. Journal of Molecular Biology, 2003, 330, 459-472.	2.0	79
43	PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity. Biochemical Journal, 2002, 366, 929-936.	1.7	19
44	Characterization of a membrane-linked Ser/Thr protein kinase inBacillus subtilis, implicated in developmental processes. Molecular Microbiology, 2002, 46, 571-586.	1.2	136
45	Bacteriophage lambda cIII gene product has an additional function apart from inhibition of cII degradation. Virus Genes, 2001, 22, 127-132.	0.7	7
46	A Plasmid Cloning Vector with Precisely Regulatable Copy Number in Escherichia coli. Molecular Biotechnology, 2001, 17, 193-200.	1.3	8
47	Characterization of PrpC from Bacillus subtilis, a Member of the PPM Phosphatase Family. Journal of Bacteriology, 2000, 182, 5634-5638.	1.0	58
48	Regulation of replication of λ phage and λ plasmid DNAs at low temperature. Molecular Genetics and Genomics, 1998, 258, 494-502.	2.4	12
49	Excess production of phage λ delayed early proteins under conditions supporting high Escherichia coli growth rates. Microbiology (United Kingdom), 1998, 144, 2217-2224.	0.7	22
50	Impaired lysogenisation of the Escherichia coli rpoA341 mutant by bacteriophage λ is due to the inability of CII to act as a transcriptional activator. Molecular Genetics and Genomics, 1997, 254, 304-311.	2.4	27
51	An RNA polymerase α subunit mutant impairs Nâ€dependent transcriptional antiterminationin Escherichia coli. Molecular Microbiology, 1997, 23, 211-222.	1.2	26
52	Synthesis of the Bacteriophage λP Protein in Amino Acid-StarvedEscherichia coliCells. Biochemical and Biophysical Research Communications, 1996, 222, 612-618.	1.0	5
53	Transcriptional activation of the origin of coliphage λ DNA replication is regulated by the host DnaA initiator function. Gene, 1995, 154, 47-50.	1.0	36