Jacques Theron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1960177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA as an Adhesin: <i>Bacillus cereus</i> Requires Extracellular DNA To Form Biofilms. Applied and Environmental Microbiology, 2009, 75, 2861-2868.	3.1	233
2	Proteomic Analysis Reveals Differential Protein Expression by Bacillus cereus during Biofilm Formation. Applied and Environmental Microbiology, 2002, 68, 2770-2780.	3.1	152
3	<i>Pantoea ananatis</i> Utilizes a Type VI Secretion System for Pathogenesis and Bacterial Competition. Molecular Plant-Microbe Interactions, 2015, 28, 420-431.	2.6	86
4	Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Critical Reviews in Microbiology, 2010, 36, 318-339.	6.1	64
5	Sequence-Based Prediction for Vaccine Strain Selection and Identification of Antigenic Variability in Foot-and-Mouth Disease Virus. PLoS Computational Biology, 2010, 6, e1001027.	3.2	63
6	Selection and Application of ssDNA Aptamers to Detect Active TB from Sputum Samples. PLoS ONE, 2012, 7, e46862.	2.5	57
7	The use of glass wool as an attachment surface for studying phenotypic changes inPseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics, 2001, 1, 871-879.	2.2	56
8	Abundance of pathogenic Escherichia coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources. Journal of Water and Health, 2006, 4, 289-296.	2.6	51
9	A quorum sensingâ€defective mutant of <i>Pectobacterium carotovorum</i> ssp. <i>brasiliense</i> 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. Molecular Plant Pathology, 2017, 18, 32-44.	4.2	49
10	<i>Ralstonia solanacearum</i> Needs Flp Pili for Virulence on Potato. Molecular Plant-Microbe Interactions, 2012, 25, 546-556.	2.6	45
11	Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense. PLoS ONE, 2017, 12, e0177647.	2.5	43
12	Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food. Systematic and Applied Microbiology, 2011, 34, 227-234.	2.8	39
13	Thermophilic Protease-Producing Geobacillus from Buranga Hot Springs in Western Uganda. Current Microbiology, 2002, 45, 144-150.	2.2	32
14	Biotechnology in South Africa. Trends in Biotechnology, 2006, 24, 557-562.	9.3	29
15	Establishment of an entirely plasmid-based reverse genetics system for Bluetongue virus. Virology, 2015, 486, 71-77.	2.4	26
16	Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. Journal of General Virology, 2011, 92, 849-859.	2.9	23
17	Cloning and Characterization of a Carboxylesterase from Bacillus coagulans 81-11. Current Microbiology, 2005, 50, 196-201.	2.2	21
18	Characterization of two LuxI/R homologs in Pantoea ananatis LMG 2665T. Canadian Journal of Microbiology, 2016, 62, 893-903.	1.7	20

JACQUES THERON

#	Article	IF	CITATIONS
19	Synthesis of empty african horse sickness virus particles. Virus Research, 2016, 213, 184-194.	2.2	17
20	Characterization of a Phosphatase Secreted by Staphylococcus aureus Strain 154, a New Member of the Bacterial Class C Family of Nonspecific Acid Phosphatases. Systematic and Applied Microbiology, 2002, 25, 21-30.	2.8	16
21	Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses. Journal of Virology, 2014, 88, 8307-8318.	3.4	14
22	Establishment of different plasmid only-based reverse genetics systems for the recovery of African horse sickness virus. Virology, 2016, 499, 144-155.	2.4	14
23	African horse sickness virus induces apoptosis in cultured mammalian cells. Virus Research, 2012, 163, 385-389.	2.2	13
24	Mapping of antigenic determinants on a SAT2 foot-and-mouth disease virus using chicken single-chain antibody fragments. Virus Research, 2012, 167, 370-379.	2.2	8
25	Membrane permeabilization of the African horse sickness virus VP5 protein is mediated by two N-terminal amphipathic α-helices. Archives of Virology, 2011, 156, 711-715.	2.1	7
26	Inherent biophysical stability of foot-and-mouth disease SAT1, SAT2 and SAT3 viruses. Virus Research, 2019, 264, 45-55.	2.2	7
27	Directed genetic modification of African horse sickness virus by reverse genetics. South African Journal of Science, 2015, 111, 8.	0.7	6
28	Evaluation of the <i>Staphylococcus aureus</i> Class C Nonspecific Acid Phosphatase (SapS) as a Reporter for Gene Expression and Protein Secretion in Gram-Negative and Gram-Positive Bacteria. Applied and Environmental Microbiology, 2007, 73, 7232-7239.	3.1	5
29	Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus. Archives of Virology, 2020, 165, 1079-1087.	2.1	5
30	Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants. Vaccines, 2021, 9, 996.	4.4	5
31	Virus uncoating is required for apoptosis induction in cultured mammalian cells infected with African horse sickness virus. Journal of General Virology, 2015, 96, 1811-1820.	2.9	5
32	The Culicoides sonorensis inhibitor of apoptosis 1 protein protects mammalian cells from apoptosis induced by infection with African horse sickness virus and bluetongue virus. Virus Research, 2017, 232, 152-161.	2.2	3
33	Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathogens, 2020, 16, e1008828.	4.7	3
34	Production of foot-and-mouth disease virus SAT2 VP1 protein. AMB Express, 2020, 10, 2.	3.0	3
35	Silencing of African horse sickness virus VP7 protein expression in cultured cells by RNA interference. Virus Genes, 2007, 35, 777-783.	1.6	2
36	African horse sickness virus infects BSR cells through macropinocytosis. Virology, 2016, 497, 217-232.	2.4	2

JACQUES THERON

#	Article	IF	CITATIONS
37	Targeted mutational analysis to unravel the complexity of African horse sickness virus NS3 function in mammalian cells. Virology, 2019, 531, 149-161.	2.4	2
38	Pathogenesis, biophysical stability and phenotypic variance of SAT2 foot-and-mouth disease virus. Veterinary Microbiology, 2020, 243, 108614.	1.9	2
39	Development of a flow cytometric bead immunoassay and its assessment as a possible aid to potency evaluation of enterotoxaemia vaccines. Journal of the South African Veterinary Association, 2014, 85, 977.	0.6	1
40	Genetic Basis of Antigenic Variation of SAT3 Foot-And-Mouth Disease Viruses in Southern Africa. Frontiers in Veterinary Science, 2020, 7, 568.	2.2	1
41	Title is missing!. , 2020, 16, e1008828.		0
42	Title is missing!. , 2020, 16, e1008828.		0
43	Title is missing!. , 2020, 16, e1008828.		0
44	Title is missing!. , 2020, 16, e1008828.		0
45	Title is missing!. , 2020, 16, e1008828.		0
46	Title is missing!. , 2020, 16, e1008828.		0