
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959963/publications.pdf Version: 2024-02-01

EMANOU LINUU

#	Article	IF	CITATIONS
1	A suitable mixed mode I/II test specimen for fracture toughness study of polyurethane foam with different cell densities. Theoretical and Applied Fracture Mechanics, 2022, 117, 103171.	2.1	19
2	Mixed modes crack paths in SCB specimens obtained via SLS. Procedia Structural Integrity, 2022, 39, 801-807.	0.3	3
3	Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation. Materials, 2022, 15, 2541.	1.3	3
4	Niger Seed Oil-Based Biodiesel Production Using Transesterification Process: Experimental Investigation and Optimization for Higher Biodiesel Yield Using Box–Behnken Design and Artificial Intelligence Tools. Applied Sciences (Switzerland), 2022, 12, 5987.	1.3	5
5	A Review on Synthetic Fibers for Polymer Matrix Composites: Performance, Failure Modes and Applications. Materials, 2022, 15, 4790.	1.3	40
6	Nondestructive Evaluation of Aluminium Foam Panels Subjected to Impact Loading. Applied Sciences (Switzerland), 2021, 11, 1148.	1.3	8
7	Mechanical characterization of lightweight foam-based sandwich panels. Materials Today: Proceedings, 2021, 45, 4166-4170.	0.9	6
8	Fracture toughness in additive manufacturing by selective laser sintering: an overview. Material Design and Processing Communications, 2021, 3, e254.	0.5	2
9	Crushing response of Composite Metallic Foams: Density and High Strain Rate effects. Journal of Alloys and Compounds, 2021, 871, 159614.	2.8	8
10	Mode I critical energy release rate of additively manufactured polyamide samples. Theoretical and Applied Fracture Mechanics, 2021, 114, 102968.	2.1	11
11	Axial crashworthiness performance of foam-based composite structures under extreme temperature conditions. Composite Structures, 2021, 271, 114156.	3.1	32
12	Crashworthiness performance of lightweight Composite Metallic Foams at high temperatures. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106516.	3.8	18
13	Radial crushing response of ex-situ foam-filled tubes at elevated temperatures. Composite Structures, 2021, 277, 114634.	3.1	19
14	Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers, 2021, 13, 3721.	2.0	92
15	Static and dynamic mode I fracture toughness of rigid PUR foams under room and cryogenic temperatures. Engineering Fracture Mechanics, 2020, 225, 106274.	2.0	42
16	Mechanical properties of A356 and ZA27 metallic syntactic foams at cryogenic temperature. Journal of Alloys and Compounds, 2020, 813, 152181.	2.8	49
17	Design and optimization of Metallic Foam Shell protective device against flying ballast impact damage in railway axles. Materials and Design, 2020, 196, 109120.	3.3	22
18	Fracture toughness of rigid polymeric foams: A review. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2483-2514.	1.7	40

#	Article	IF	CITATIONS
19	The effect of crack insertion for FDM printed PLA materials on Mode I and Mode II fracture toughness. Procedia Structural Integrity, 2020, 28, 1134-1139.	0.3	25
20	ls Fracture Toughness of PUR Foams a Material Property? A Statistical Approach. Materials, 2020, 13, 4868.	1.3	6
21	Hydroxyapatite coatings on Ti substrates by simultaneous precipitation and electrodeposition. Applied Surface Science, 2020, 527, 146820.	3.1	22
22	Out-of-plane crushing response of aluminum honeycombs in-situ filled with graphene-reinforced polyurethane foam. Composite Structures, 2020, 249, 112548.	3.1	30
23	Mode I Fracture Toughness of Polyamide and Alumide Samples obtained by Selective Laser Sintering Additive Process. Polymers, 2020, 12, 640.	2.0	30
24	Effect of manufacturing parameters on tensile properties of FDM printed specimens. Procedia Structural Integrity, 2020, 26, 313-320.	0.3	78
25	Mode I and II fracture toughness investigation of Laser-Sintered Polyamide. Theoretical and Applied Fracture Mechanics, 2020, 106, 102497.	2.1	41
26	Anisotropic Compressive Behavior of Metallic Foams under Extreme Temperature Conditions. Materials, 2020, 13, 2329.	1.3	19
27	Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 2019, 11, 1667.	2.0	776
28	Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering. Materials, 2019, 12, 871.	1.3	59
29	Characterization of brazed joints by electrical resistance spot brazing with Ni-based amorphous self-flux alloys. Journal of Manufacturing Processes, 2019, 37, 617-627.	2.8	11
30	Crack initiation angles and propagation paths in polyurethane foams under mixed modes I/II and I/III loading. Theoretical and Applied Fracture Mechanics, 2019, 101, 152-161.	2.1	81
31	Correlations between Process Parameters and Outcome Properties of Laser-Sintered Polyamide. Polymers, 2019, 11, 1850.	2.0	34
32	Compressive properties of zinc syntactic foams at elevated temperatures. Composites Part B: Engineering, 2019, 167, 122-134.	5.9	85
33	Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. Journal of Alloys and Compounds, 2019, 775, 675-689.	2.8	59
34	Cryogenic and high temperature compressive properties of Metal Foam Matrix Composites. Composite Structures, 2019, 209, 490-498.	3.1	49
35	Mechanical and fracture properties of particleboard. Frattura Ed Integrita Strutturale, 2019, 13, 266-276.	0.5	2
36	The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams. Journal of Materials Engineering and Performance, 2018, 27, 99-108.	1.2	56

#	Article	IF	CITATIONS
37	Mechanical properties of Light Expanded Clay Aggregated (LECA) filled tubes. Materials Letters, 2018, 217, 194-197.	1.3	23
38	Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+III loading. Polymer Testing, 2018, 67, 75-83.	2.3	80
39	The temperature and anisotropy effect on compressive behavior of cylindrical closed-cell aluminum-alloy foams. Journal of Alloys and Compounds, 2018, 740, 1172-1179.	2.8	55
40	Influence of Cell Topology on Mode I Fracture Toughness of Cellular Structures. Physical Mesomechanics, 2018, 21, 178-186.	1.0	22
41	The mechanical properties of expanded perlite-aluminium syntactic foam at elevated temperatures. Journal of Alloys and Compounds, 2018, 737, 590-596.	2.8	74
42	The Anisotropy Effect of Closed-Cell Polyisocyanurate (PIR) Rigid Foam under Quasi-Static Compression Loads. IOP Conference Series: Materials Science and Engineering, 2018, 416, 012037.	0.3	1
43	Comparative Study of Plastic Strain Accumulations at Thermal Cycles for Solder Alloys. IOP Conference Series: Materials Science and Engineering, 2018, 416, 012092.	0.3	0
44	Mixed mode fracture toughness of particleboard. Procedia Structural Integrity, 2018, 9, 47-54.	0.3	3
45	Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams. Polymers, 2018, 10, 1298.	2.0	41
46	Poisson's Ratio of Closed-Cell Aluminium Foams. Materials, 2018, 11, 1904.	1.3	64
47	On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature. Materials, 2018, 11, 554.	1.3	47
48	Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions. Archives of Civil and Mechanical Engineering, 2017, 17, 457-466.	1.9	62
49	Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 214-224.	2.6	55
50	An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling. Theoretical and Applied Fracture Mechanics, 2017, 91, 148-154.	2.1	54
51	The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes. Composite Structures, 2017, 180, 709-722.	3.1	62
52	Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions. Materials Letters, 2017, 206, 182-184.	1.3	78
53	Lowâ€cycle fatigue behaviour of ductile closedâ€cell aluminium alloy foams. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 597-604.	1.7	40
54	Experimental Determination of Mixed-Mode Fracture Toughness for Rigid Polyurethane Foams. Lecture Notes in Mechanical Engineering, 2017, , 221-237.	0.3	4

#	Article	IF	CITATIONS
55	Experimental and numerical crack paths in PUR foams. Engineering Fracture Mechanics, 2016, 167, 68-83.	2.0	42
56	Development of Parametric Kelvin Structures will Closed Cells. Solid State Phenomena, 2016, 254, 49-54.	0.3	3
57	Experimental investigations and numerical simulations of notch effect in cellular plastic materials. IOP Conference Series: Materials Science and Engineering, 2016, 123, 012060.	0.3	6
58	Experimental validation of micromechanical models for brittle aluminium alloy foam. Theoretical and Applied Fracture Mechanics, 2016, 83, 11-18.	2.1	38
59	Scaling of compression strength in disordered solids: metallic foams. Frattura Ed Integrita Strutturale, 2016, 10, 55-62.	0.5	34
60	On the crack path under mixed mode loading on PUR foams. Frattura Ed Integrita Strutturale, 2016, , .	0.5	0
61	Numerical evaluation of two-dimensional micromechanical structures of anisotropic cellular materials: case study for polyurethane rigid foams. Iranian Polymer Journal (English Edition), 2015, 24, 515-529.	1.3	20
62	Application of TCD for brittle fracture of notched PUR materials. Theoretical and Applied Fracture Mechanics, 2015, 80, 87-95.	2.1	58
63	Shear and mode II fracture of PUR foams. Engineering Failure Analysis, 2015, 58, 465-476.	1.8	64
64	The notch effect on fracture of polyurethane materials. Frattura Ed Integrita Strutturale, 2014, 8, 101-108.	0.5	18
65	Uniaxial Compression Tests of Metallic Foams: A Recipe. Key Engineering Materials, 2014, 601, 237-241.	0.4	3
66	Evaluation of Mixed Mode Fracture for PUR Foams. , 2014, 3, 1342-1352.		26
67	Analysis of Deformation Bands in Polyurethane Foams. Key Engineering Materials, 2014, 601, 250-253.	0.4	4
68	Refinements on fracture toughness of PUR foams. Engineering Fracture Mechanics, 2014, 129, 54-66.	2.0	74
69	A comparison between dynamic and static fracture toughness of polyurethane foams. Polymer Testing, 2013, 32, 673-680.	2.3	92
70	Mechanical behavior of sandwich composite beams made of foams and functionally graded materials. International Journal of Solids and Structures, 2013, 50, 519-530.	1.3	66
71	Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression. Journal of Physics: Conference Series, 2013, 451, 012002.	0.3	51
72	Size Effect on Fracture Toughness of Rigid Polyurethane Foams. Solid State Phenomena, 2012, 188, 205-210.	0.3	21

#	Article	IF	CITATIONS
73	The Influence of the Steel and Aluminium Components Separation at the Conductors Locking for Stress-Strain Tests. Key Engineering Materials, 0, 417-418, 693-696.	0.4	1
74	Experimental Determination of Mechanical Properties of Aluminium Foams Using Digital Image Correlation. Key Engineering Materials, 0, 601, 254-257.	0.4	12
75	Determination of Flexural Properties of Rigid PUR Foams Using Digital Image Correlation. Solid State Phenomena, 0, 216, 116-121.	0.3	31
76	Energy - Absorption and Efficiency Diagrams of Rigid PUR Foams. Key Engineering Materials, 0, 601, 246-249.	0.4	39
77	Mixed-Mode Testing for an Asymmetric Four-Point Bending Configuration of Polyurethane Foams. Applied Mechanics and Materials, 0, 760, 239-244.	0.2	8
78	Manufacturing and Compressive Mechanical Behavior of Reinforced Polyurethane Flexible (PUF) Foams. IOP Conference Series: Materials Science and Engineering, 0, 416, 012053.	0.3	8
79	Quasi-Static Mechanical Characterization of Lightweight Fly Ash-Based Geopolymer Foams. IOP Conference Series: Materials Science and Engineering, 0, 416, 012102.	0.3	5
80	Metal Foam-Filled Tubes as Plastic Dissipaters in Earthquake-Resistant Steel Buildings. IOP Conference Series: Materials Science and Engineering, 0, 416, 012051.	0.3	10
81	Compressive Behavior and Energy Absorption Capability of Reinforced Closed-Cell Aluminum Alloy Foams. IOP Conference Series: Materials Science and Engineering, 0, 416, 012079.	0.3	3