
Gilberto Siqueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959930/publications.pdf Version: 2024-02-01

CILBERTO SIGUEIRA

#	Article	IF	CITATIONS
1	Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Separation and Purification Technology, 2022, 285, 120341.	3.9	8
2	Biomimetic Lightâ€Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 2022, 9, e2105819.	5.6	13
3	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Interfaces, 2022, 14, 16703-16717.	4.0	11
4	Sustainable Cellulose Nanofiber Films from Carrot Pomace as Sprayable Coatings for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 342-352.	3.2	32
5	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	5.1	14
6	Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 2021, 251, 117021.	5.1	22
7	Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 2021, 8, 29.	1.6	29
8	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	5.1	59
9	Fully 3D Printed and Disposable Paper Supercapacitors. Advanced Materials, 2021, 33, e2101328.	11.1	78
10	Virus pHâ€Dependent Interactions with Cationically Modified Cellulose and Their Application in Water Filtration. Small, 2021, 17, e2100307.	5.2	11
11	Melanized-Cationic Cellulose Nanofiber Foams for Bioinspired Removal of Cationic Dyes. Biomacromolecules, 2021, 22, 4681-4690.	2.6	7
12	Versatile carbon-loaded shellac ink for disposable printed electronics. Scientific Reports, 2021, 11, 23784.	1.6	22
13	Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 2020, 30, 1904127.	7.8	54
14	Celluloseâ€Based Microparticles for Magnetically Controlled Optical Modulation and Sensing. Small, 2020, 16, 1904251.	5.2	9
15	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	5.2	64
16	Lignin in Bio-Based Liquid Crystalline Network Material with Potential for Direct Ink Writing. ACS Applied Bio Materials, 2020, 3, 6049-6058.	2.3	10
17	Additive manufacturing of silica aerogels. Nature, 2020, 584, 387-392.	13.7	323
18	3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 10292-10302.	3.2	43

GILBERTO SIQUEIRA

#	Article	IF	CITATIONS
19	Dual-porous cellulose nanofibril aerogels <i>via</i> modular drying and cross-linking. Nanoscale, 2020, 12, 7383-7394.	2.8	37
20	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	5.6	303
21	Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites. Advanced Functional Materials, 2020, 30, 2002914.	7.8	40
22	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	7.3	254
23	3D Printing: Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070024.	7.8	2
24	Wood â \in " Base material for Optical Elements for Terahertz Waves?. , 2020, , .		0
25	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	2.5	44
26	3D Printed Disposable Wireless Ion Sensors with Biocompatible Cellulose Composites. Advanced Electronic Materials, 2019, 5, 1800778.	2.6	43
27	Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials, 2019, 9, 78.	1.9	87
28	Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 26-30.	2.3	22
29	3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams. ACS Sustainable Chemistry and Engineering, 2018, 6, 17160-17167.	3.2	28
30	Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose–Nisin Biocomposite Suspension. ACS Applied Materials & Interfaces, 2018, 10, 20170-20181.	4.0	39
31	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	7.3	203
32	Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692.	3.2	100
33	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	7.8	447
34	3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2017, 2, 29-34.	1.8	155
35	A Proteinâ€Nanocellulose Paper for Sensing Copper Ions at the Nano―to Micromolar Level. Advanced Functional Materials, 2017, 27, 1604291.	7.8	54
36	Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Biomacromolecules, 2016, 17, 1404-1413.	2.6	37

GILBERTO SIQUEIRA

#	Article	IF	CITATIONS
37	Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 2016, 123, 49-56.	3.8	63
38	Synthesis of new bis(acyl)phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals. Chemical Communications, 2016, 52, 2823-2826.	2.2	53
39	Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016, 83, 2-18.	3.8	573
40	TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. Biomacromolecules, 2015, 16, 3640-3650.	2.6	84
41	Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp and Paper Research Journal, 2014, 29, 167-175.	0.3	108
42	Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydrate Polymers, 2013, 91, 711-717.	5.1	137
43	Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Journal of Membrane Science, 2013, 427, 218-229.	4.1	123
44	Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung, 2013, 67, 853-861.	0.9	29
45	Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Composites Science and Technology, 2011, 71, 1886-1892.	3.8	43
46	Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). European Polymer Journal, 2011, 47, 2216-2227.	2.6	89
47	From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules, 2011, 12, 2456-2465.	2.6	365
48	Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2011, 18, 57-65.	2.4	110
49	Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydrate Polymers, 2011, 83, 1740-1748.	5.1	334
50	Poly(É›-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer, 2011, 52, 1532-1538.	1.8	200
51	Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, 2, 728-765.	2.0	1,080
52	High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim) Tj ETQq0 0 0 rgB	「 /Qverloch 2.4	≀ 10 Tf 50 14

53	Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2010, 17, 1147-1158.	2.4	183
54	Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. Journal of Applied Polymer Science, 2010, 115, 269-276.	1.3	17

#	Article	IF	CITATIONS
55	New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir, 2010, 26, 402-411.	1.6	342
56	Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 2009, 50, 4552-4563.	1.8	477
57	Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 2009, 10, 425-432.	2.6	720