Gilberto Siqueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959930/publications.pdf

Version: 2024-02-01

57 papers	8,019 citations	94381 37 h-index	57 g-index
60	60	60	7819
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2010, 2, 728-765.	2.0	1,080
2	Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 2009, 10, 425-432.	2.6	720
3	Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016, 83, 2-18.	3.8	573
4	Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer, 2009, 50, 4552-4563.	1.8	477
5	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	7.8	447
6	From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules, 2011, 12, 2456-2465.	2.6	365
7	New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir, 2010, 26, 402-411.	1.6	342
8	Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydrate Polymers, 2011, 83, 1740-1748.	5.1	334
9	Additive manufacturing of silica aerogels. Nature, 2020, 584, 387-392.	13.7	323
10	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	5.6	303
11	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	7.3	254
12	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	7.3	203
13	Poly(É)-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer, 2011, 52, 1532-1538.	1.8	200
14	Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2010, 17, 1147-1158.	2.4	183
15	High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim) Tj ETQq $1\ 1\ 0.784$	314 rgBT 2.4	/Oyerlock 10
16	3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2017, 2, 29-34.	1.8	155
17	Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydrate Polymers, 2013, 91, 711-717.	5.1	137
18	Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Journal of Membrane Science, 2013, 427, 218-229.	4.1	123

#	Article	IF	Citations
19	Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2011, 18, 57-65.	2.4	110
20	Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp and Paper Research Journal, 2014, 29, 167-175.	0.3	108
21	Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692.	3.2	100
22	Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(\hat{l}_{μ} -caprolactone). European Polymer Journal, 2011, 47, 2216-2227.	2.6	89
23	Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials, 2019, 9, 78.	1.9	87
24	TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. Biomacromolecules, 2015, 16, 3640-3650.	2.6	84
25	Fully 3D Printed and Disposable Paper Supercapacitors. Advanced Materials, 2021, 33, e2101328.	11.1	78
26	Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 17969-17979.	5.2	64
27	Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 2016, 123, 49-56.	3.8	63
28	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	5.1	59
29	A Proteinâ€Nanocellulose Paper for Sensing Copper Ions at the Nano―to Micromolar Level. Advanced Functional Materials, 2017, 27, 1604291.	7.8	54
30	Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 2020, 30, 1904127.	7.8	54
31	Synthesis of new bis(acyl)phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals. Chemical Communications, 2016, 52, 2823-2826.	2.2	53
32	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	2.5	44
33	Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Composites Science and Technology, 2011, 71, 1886-1892.	3.8	43
34	3D Printed Disposable Wireless Ion Sensors with Biocompatible Cellulose Composites. Advanced Electronic Materials, 2019, 5, 1800778.	2.6	43
35	3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 10292-10302.	3.2	43
36	Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites. Advanced Functional Materials, 2020, 30, 2002914.	7.8	40

#	Article	IF	Citations
37	Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose–Nisin Biocomposite Suspension. ACS Applied Materials & Interfaces, 2018, 10, 20170-20181.	4.0	39
38	Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Biomacromolecules, 2016, 17, 1404-1413.	2.6	37
39	Dual-porous cellulose nanofibril aerogels <i>via</i> modular drying and cross-linking. Nanoscale, 2020, 12, 7383-7394.	2.8	37
40	Sustainable Cellulose Nanofiber Films from Carrot Pomace as Sprayable Coatings for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 342-352.	3.2	32
41	Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung, 2013, 67, 853-861.	0.9	29
42	Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering, 2021, 8, 29.	1.6	29
43	3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams. ACS Sustainable Chemistry and Engineering, 2018, 6, 17160-17167.	3.2	28
44	Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 26-30.	2.3	22
45	Nanocellulose-lysozyme colloidal gels via electrostatic complexation. Carbohydrate Polymers, 2021, 251, 117021.	5.1	22
46	Versatile carbon-loaded shellac ink for disposable printed electronics. Scientific Reports, 2021, 11, 23784.	1.6	22
47	Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. Journal of Applied Polymer Science, 2010, 115, 269-276.	1.3	17
48	Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment. Carbohydrate Polymers, 2022, 292, 119675.	5.1	14
49	Biomimetic Lightâ€Driven Aerogel Passive Pump for Volatile Organic Pollutant Removal. Advanced Science, 2022, 9, e2105819.	5.6	13
50	Virus pHâ€Dependent Interactions with Cationically Modified Cellulose and Their Application in Water Filtration. Small, 2021, 17, e2100307.	5.2	11
51	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16703-16717.	4.0	11
52	Lignin in Bio-Based Liquid Crystalline Network Material with Potential for Direct Ink Writing. ACS Applied Bio Materials, 2020, 3, 6049-6058.	2.3	10
53	Celluloseâ€Based Microparticles for Magnetically Controlled Optical Modulation and Sensing. Small, 2020, 16, 1904251.	5.2	9
54	Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Separation and Purification Technology, 2022, 285, 120341.	3.9	8

#	Article	IF	CITATIONS
55	Melanized-Cationic Cellulose Nanofiber Foams for Bioinspired Removal of Cationic Dyes. Biomacromolecules, 2021, 22, 4681-4690.	2.6	7
56	3D Printing: Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070024.	7.8	2
57	Wood – Base material for Optical Elements for Terahertz Waves?. , 2020, , .		0