Siavash Mirarab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195981/publications.pdf

Version: 2024-02-01

82 papers 13,834 citations

40 h-index 75 g-index

117 all docs

117 docs citations

117 times ranked

18947 citing authors

#	Article	IF	CITATIONS
1	DEPP: Deep Learning Enables Extending Species Trees using Single Genes. Systematic Biology, 2023, 72, 17-34.	2.7	11
2	Fast and accurate distanceâ€based phylogenetic placement using divide and conquer. Molecular Ecology Resources, 2022, 22, 1213-1227.	2.2	25
3	Completing gene trees without species trees in sub-quadratic time. Bioinformatics, 2022, 38, 1532-1541.	1.8	9
4	QuCo: quartet-based co-estimation of species trees and gene trees. Bioinformatics, 2022, 38, i413-i421.	1.8	2
5	Log Transformation Improves Dating of Phylogenies. Molecular Biology and Evolution, 2021, 38, 1151-1167.	3.5	7
6	Multiple Sequence Alignment for Large Heterogeneous Datasets Using SATé, PASTA, and UPP. Methods in Molecular Biology, 2021, 2231, 99-119.	0.4	1
7	HIV Care Prioritization Using Phylogenetic Branch Length. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 86, 626-637.	0.9	5
8	CONSULT: accurate contamination removal using locality-sensitive hashing. NAR Genomics and Bioinformatics, 2021, 3, lqab071.	1.5	14
9	TAPER: Pinpointing errors in multiple sequence alignments despite varying rates of evolution. Methods in Ecology and Evolution, 2021, 12, 2145-2158.	2.2	13
10	Multispecies Coalescent: Theory and Applications in Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 247-268.	3.8	28
11	SODA: multi-locus species delimitation using quartet frequencies. Bioinformatics, 2021, 36, 5623-5631.	1.8	21
12	Estimating repeat spectra and genome length from low-coverage genome skims with RESPECT. PLoS Computational Biology, 2021, 17, e1009449.	1.5	17
13	APPLES: Scalable Distance-Based Phylogenetic Placement with or without Alignments. Systematic Biology, 2020, 69, 566-578.	2.7	51
14	INSTRAL: Discordance-Aware Phylogenetic Placement Using Quartet Scores. Systematic Biology, 2020, 69, 384-391.	2.7	14
15	ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy. Molecular Biology and Evolution, 2020, 37, 3292-3307.	3 . 5	116
16	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
17	Phylogenetic double placement of mixed samples. Bioinformatics, 2020, 36, i335-i343.	1.8	11
18	Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nature Communications, 2020, 11, 2500.	5.8	368

#	Article	IF	Citations
19	Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification. Molecular Ecology, 2020, 29, 2521-2534.	2.0	58
20	More is neededâ€"Thousands of loci are required to elucidate the relationships of the  flowers of the sea' (Sabellida, Annelida). Molecular Phylogenetics and Evolution, 2020, 151, 106892.	1.2	24
21	The impact of contaminants on the accuracy of genome skimming and the effectiveness of exclusion read filters. Molecular Ecology Resources, 2020, 20, 649-661.	2.2	16
22	Forcing external constraints on tree inference using ASTRAL. BMC Genomics, 2020, 21, 218.	1.2	19
23	TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification. Bioinformatics, 2019, 35, i31-i40.	1.8	9
24	Phylogenetic Signal of Indels and the Neoavian Radiation. Diversity, 2019, 11, 108.	0.7	33
25	TreeCluster: Clustering biological sequences using phylogenetic trees. PLoS ONE, 2019, 14, e0221068.	1.1	99
26	Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 2019, 364, .	6.0	266
27	ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics, 2019, 35, 3961-3969.	1.8	57
28	Skmer: assembly-free and alignment-free sample identification using genome skims. Genome Biology, 2019, 20, 34.	3.8	70
29	Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications, 2019, 10, 5477.	5.8	197
30	FAVITES: simultaneous simulation of transmission networks, phylogenetic trees and sequences. Bioinformatics, 2019, 35, 1852-1861.	1.8	45
31	Multi-allele species reconstruction using ASTRAL. Molecular Phylogenetics and Evolution, 2019, 130, 286-296.	1.2	106
32	TreeCluster: Clustering biological sequences using phylogenetic trees., 2019, 14, e0221068.		0
33	TreeCluster: Clustering biological sequences using phylogenetic trees. , 2019, 14, e0221068.		O
34	TreeCluster: Clustering biological sequences using phylogenetic trees. , 2019, 14, e0221068.		0
35	Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. MSystems, 2018, 3, .	1.7	376
36	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	0.8	38

3

#	Article	IF	CITATIONS
37	Identifying the favored mutation in a positive selective sweep. Nature Methods, 2018, 15, 279-282.	9.0	56
38	A Two-State Model of Tree Evolution and Its Applications to Alu Retrotransposition. Systematic Biology, 2018, 67, 475-489.	2.7	5
39	DiscoVista: Interpretable visualizations of gene tree discordance. Molecular Phylogenetics and Evolution, 2018, 122, 110-115.	1.2	106
40	Species Tree Estimation Using ASTRAL: How Many Genes Are Enough?. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1738-1747.	1.9	19
41	Interspecific Gene Flow Shaped the Evolution of the Genus Canis. Current Biology, 2018, 28, 3441-3449.e5.	1.8	110
42	TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics, 2018, 19, 272.	1.2	225
43	Testing for Polytomies in Phylogenetic Species Trees Using Quartet Frequencies. Genes, 2018, 9, 132.	1.0	107
44	ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 2018, 19, 153.	1.2	1,451
45	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
46	TreeShrink: Efficient Detection of Outlier Tree Leaves. Lecture Notes in Computer Science, 2017, , $116-140$.	1.0	7
47	ASTRAL-III: Increased Scalability and Impacts of Contracting Low Support Branches. Lecture Notes in Computer Science, 2017, , 53-75.	1.0	129
48	Fragmentary Gene Sequences Negatively Impact Gene Tree and Species Tree Reconstruction. Molecular Biology and Evolution, 2017, 34, 3279-3291.	3.5	73
49	Phylogenomics: Constrained gene tree inference. Nature Ecology and Evolution, 2017, 1, 56.	3.4	9
50	Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction. PLoS ONE, 2017, 12, e0182238.	1.1	71
51	Evaluating Summary Methods for Multilocus Species Tree Estimation in the Presence of Incomplete Lineage Sorting. Systematic Biology, 2016, 65, 366-380.	2.7	242
52	HIPPI: highly accurate protein family classification with ensembles of HMMs. BMC Genomics, 2016, 17, 765.	1.2	17
53	Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Molecular Biology and Evolution, 2016, 33, 1654-1668.	3.5	650
54	Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction. BMC Genomics, 2016, 17, 783.	1.2	24

#	Article	IF	CITATIONS
55	The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 330-344.	1.1	195
56	Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics, 2015, 16, S1.	1.2	57
57	A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics, 2015, 16, S2.	1.2	128
58	Ultra-large alignments using phylogeny-aware profiles. Genome Biology, 2015, 16, 124.	3.8	113
59	ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics, 2015, 31, i44-i52.	1.8	822
60	PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. Journal of Computational Biology, 2015, 22, 377-386.	0.8	360
61	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72
62	Response to Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	6.0	53
63	Response to Comment on "Statistical binning enables an accurate coalescent-based estimation of the avian tree― Science, 2015, 350, 171-171.	6.0	12
64	Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses. PLoS ONE, 2015, 10, e0129183.	1.1	98
65	TIPP: taxonomic identification and phylogenetic profiling. Bioinformatics, 2014, 30, 3548-3555.	1.8	93
66	Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science, 2014, 346, 1250463.	6.0	225
67	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
68	PASTA: Ultra-Large Multiple Sequence Alignment. Lecture Notes in Computer Science, 2014, , 177-191.	1.0	48
69	Data access for the 1,000 Plants (1KP) project. GigaScience, 2014, 3, 17.	3.3	582
70	Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4859-68.	3.3	1,123
71	BBCA: Improving the scalability of *BEAST using random binning. BMC Genomics, 2014, 15, S11.	1.2	38
72	Phylotastic! Making tree-of-life knowledge accessible, reusable and convenient. BMC Bioinformatics, 2013, 14, 158.	1.2	33

#	Article	IF	CITATIONS
73	Size-Constrained Regression Test Case Selection Using Multicriteria Optimization. IEEE Transactions on Software Engineering, 2012, 38, 936-956.	4.3	63
74	MRL and SuperFine+MRL: new supertree methods. Algorithms for Molecular Biology, 2012, 7, 3.	0.3	62
75	F <scp>AST</scp> SP: linear time calculation of alignment accuracy. Bioinformatics, 2011, 27, 3250-3258.	1.8	56
76	The Effects of Time Constraints on Test Case Prioritization: A Series of Controlled Experiments. IEEE Transactions on Software Engineering, 2010, 36, 593-617.	4.3	126
77	A requirement-based software testing framework: An industrial practice. , 2008, , .		7
78	Adaptive Action Selection in Autonomic Software Using Reinforcement Learning., 2008,,.		31
79	An empirical study of the effect of time constraints on the cost-benefits of regression testing. , 2008, , .		60
80	An Empirical Study on Bayesian Network-based Approach for Test Case Prioritization., 2008,,.		37
81	Using Bayesian Belief Networks to Predict Change Propagation in Software Systems., 2007,,.		27
82	A Prioritization Approach for Software TestÂCases Based on Bayesian Networks. , 2007, , 276-290.		42