Markus Valtiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Temperature-Processed Transparent Electrodes Based on Compact and Mesoporous Titanium Oxide Layers for Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5318-5330.	2.5	5
2	Bottom-up characterization of electrochemical passivity from simple binary alloys to high entropy alloys. Electrochimica Acta, 2022, 405, 139804.	2.6	7
3	Environmentally Friendly Layered Double Hydroxide Conversion Layers: Formation Kinetics on Zn–Al–Mg-Coated Steel. ACS Applied Materials & Interfaces, 2022, 14, 6109-6119.	4.0	16
4	Versatile, low-cost, non-toxic potentiometric pH-sensors based on niobium. Sensing and Bio-Sensing Research, 2022, 35, 100478.	2.2	5
5	Transparent electrodes based on molybdenum–titanium–oxide with increased water stability for use as hole-transport/hole-injection components. Journal of Materials Science, 2022, 57, 8752-8766.	1.7	2
6	Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration. Langmuir, 2022, 38, 6949-6958.	1.6	2
7	Corrosion protection of ÂZn–Al–Mgâ€coated steel by a layered double hydroxide conversion layer. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1657-1665.	0.8	4
8	Design and testing of drift free force probe experiments with absolute distance control. Review of Scientific Instruments, 2022, 93, 073705.	0.6	0
9	Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. Materials, 2022, 15, 4639.	1.3	4
10	Scanning electrochemical microscopy methods (SECM) and ion-selective microelectrodes for corrosion studies. Corrosion Reviews, 2022, 40, 515-542.	1.0	5
11	Fast sputter deposition of MoOx/metal/MoOx transparent electrodes on glass and PET substrates. Journal of Materials Science, 2021, 56, 9047-9064.	1.7	10
12	The Basic Theorem of Temperature-Dependent Processes. Thermo, 2021, 1, 45-60.	0.6	10
13	Novel in situ sensing surface forces apparatus for measuring gold versus gold, hydrophobic, and biophysical interactions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 023201.	0.9	11
14	Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation. Langmuir, 2021, 37, 4943-4952.	1.6	11
15	Visualization of Ion Surface Binding and In Situ Evaluation of Surface Interaction Free Energies via Competitive Adsorption Isotherms. ACS Physical Chemistry Au, 2021, 1, 45-53.	1.9	3
16	Comparison of elemental resolved non-confined and restricted electrochemical degradation of nickel base alloys. Corrosion Science, 2021, 190, 109629.	3.0	3
17	Hydration Forces Dominate Surface Charge Dependent Lipid Bilayer Interactions under Physiological Conditions. Journal of Physical Chemistry Letters, 2021, 12, 9248-9252.	2.1	5
18	Complementary electrochemical ICP-MS flow cell and in-situ AFM study of the anodic desorption of molecular adhesion promotors. Applied Surface Science, 2021, 570, 151015.	3.1	3

#	Article	IF	CITATIONS
19	Lipid Anchoring Improves Lubrication and Wear Resistance of the Collagen I Matrix. Langmuir, 2021, 37, 13810-13815.	1.6	3
20	pH-Dependent interaction mechanism of lignin nanofilms. Nanoscale, 2021, 13, 19568-19577.	2.8	3
21	Mechanistic understanding of catechols and integration into an electrochemically cross-linked mussel foot inspired adhesive hydrogel. Biointerphases, 2021, 16, 061002.	0.6	6
22	Photocorrosion of ZnO Single Crystals during Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 51530-51536.	4.0	38
23	Solid-supported lipid bilayers – A versatile tool for the structural and functional characterization of membrane proteins. Methods, 2020, 180, 56-68.	1.9	14
24	Forces, structures, and ion mobility in nanometer-to-subnanometer extreme spatial confinements: Electrochemisty and ionic liquids. Current Opinion in Colloid and Interface Science, 2020, 47, 126-136.	3.4	7
25	Adsorption and Diffusion Moderated by Polycationic Polymers during Electrodeposition of Zinc. ACS Applied Materials & amp; Interfaces, 2020, 12, 29928-29936.	4.0	5
26	Probing Structures, Forces, and Dynamics of Soft Matter in Nanometer Confinement Using Multiple Beam Interferometry. , 2020, , 37-90.		0
27	Structure and Dynamics of Confined Liquids: Challenges and Perspectives for the X-ray Surface Forces Apparatus. Langmuir, 2019, 35, 16679-16692.	1.6	23
28	Interaction Profiles and Stability of Rigid and Polymer-Tethered Lipid Bilayer Models at Highly Charged and Highly Adhesive Contacts. Langmuir, 2019, 35, 15552-15563.	1.6	13
29	Nanometer Resolved Real Time Visualization of Acidification and Material Breakdown in Confinement. Advanced Materials Interfaces, 2019, 6, 1802069.	1.9	6
30	In Situ Mechanical Analysis of the Nanoscopic Solid Electrolyte Interphase on Anodes of Liâ€lon Batteries. Advanced Science, 2019, 6, 1900190.	5.6	26
31	Optimizing multiple beam interferometry in the surface forces apparatus: Novel optics, reflection mode modeling, metal layer thicknesses, birefringence, and rotation of anisotropic layers. Review of Scientific Instruments, 2019, 90, 043908.	0.6	23
32	Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution. Langmuir, 2018, 34, 2637-2646.	1.6	18
33	Interfacial Layering and Screening Behavior of Glyme-Based Lithium Electrolytes. Journal of Physical Chemistry Letters, 2018, 9, 577-582.	2.1	3
34	Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces. Physical Chemistry Chemical Physics, 2018, 20, 11722-11729.	1.3	10
35	Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. Langmuir, 2018, 34, 766-772.	1.6	4
36	Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Physical Chemistry Chemical Physics, 2017, 19, 4216-4221.	1.3	9

#	Article	IF	CITATIONS
37	Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations. ACS Nano, 2017, 11, 2586-2597.	7.3	37
38	Physikalische Chemie 2016: Einzelmolekül-Kraftspektroskopie an Flüssig-fest-GrenzflÃ ¤ hen. Nachrichten Aus Der Chemie, 2017, 65, 329-333.	0.0	0
39	Adhesive barnacle peptides exhibit a steric-driven design rule to enhance adhesion between asymmetric surfaces. Colloids and Surfaces B: Biointerfaces, 2017, 152, 42-48.	2.5	16
40	Long range electrostatic forces in ionic liquids. Chemical Communications, 2017, 53, 1214-1224.	2.2	285
41	Anion Layering and Steric Hydration Repulsion on Positively Charged Surfaces in Aqueous Electrolytes. ChemPhysChem, 2017, 18, 3056-3065.	1.0	17
42	Interaction Forces between Pegylated Star-Shaped Polymers at Mica Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 28027-28033.	4.0	7
43	Resolving Nonâ€6pecific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie, 2016, 128, 9676-9680.	1.6	13
44	Resolving Nonâ€5pecific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie - International Edition, 2016, 55, 9524-9528.	7.2	43
45	Lithium-ion battery electrolyte mobility at nano-confined graphene interfaces. Nature Communications, 2016, 7, 12693.	5.8	26
46	How specific halide adsorption varies hydrophobic interactions. Biointerphases, 2016, 11, 019007.	0.6	7
47	lons and solvation at biointerfaces. Biointerphases, 2016, 11, 018801.	0.6	7
48	Selfâ€Assembled Monolayers: Starâ€ S haped Crystallographic Cracking of Localized Nanoporous Defects (Adv. Mater. 33/2015). Advanced Materials, 2015, 27, 4947-4947.	11.1	0
49	Starâ€Shaped Crystallographic Cracking of Localized Nanoporous Defects. Advanced Materials, 2015, 27, 4877-4882.	11.1	21
50	Characterizing the Influence of Water on Charging and Layering at Electrified Ionic‣iquid/Solid Interfaces. Advanced Materials Interfaces, 2015, 2, 1500159.	1.9	93
51	Long-range electrostatic screening in ionic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7432-7437.	3.3	214
52	Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. Langmuir, 2015, 31, 11051-11057.	1.6	2
53	Scaling from Single Molecule to Macroscopic Adhesion at Polymer/Metal Interfaces. Langmuir, 2015, 31, 2722-2729.	1.6	16
54	Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts. Journal of Colloid and Interface Science, 2015, 446, 244-251.	5.0	50

#	Article	IF	CITATIONS
55	Real-Time Multiple Beam Interferometry Reveals Complex Deformations of Metal–Organic-Framework Crystals upon Humidity Adsorption/Desorption. Journal of Physical Chemistry C, 2015, 119, 16769-16776.	1.5	7
56	Real-Time Monitoring of Aluminum Crevice Corrosion and Its Inhibition by Vanadates with Multiple Beam Interferometry in a Surface Forces Apparatus. Journal of the Electrochemical Society, 2015, 162, C327-C332.	1.3	16
57	Developing a General Interaction Potential for Hydrophobic and Hydrophilic Interactions. Langmuir, 2015, 31, 2051-2064.	1.6	188
58	Deciphering the scaling of single-molecule interactions using Jarzynski's equality. Nature Communications, 2014, 5, 5539.	5.8	38
59	Electrochemical control of specific adhesion between amine-functionalized polymers and noble metal electrode interfaces. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 362-369.	0.8	10
60	Influence of Molecular Dipole Orientations on Long-Range Exponential Interaction Forces at Hydrophobic Contacts in Aqueous Solutions. ACS Nano, 2014, 8, 10870-10877.	7.3	25
61	Effect of Interfacial Ion Structuring on Range and Magnitude of Electric Double Layer, Hydration, and Adhesive Interactions between Mica Surfaces in 0.05〓3 M Li ⁺ and Cs ⁺ Electrolyte Solutions. Langmuir, 2014, 30, 4322-4332.	1.6	79
62	Angstrom-Resolved Real-Time Dissection of Electrochemically Active Noble Metal Interfaces. ACS Nano, 2014, 8, 5979-5987.	7.3	24
63	The Intersection of Interfacial Forces and Electrochemical Reactions. Journal of Physical Chemistry B, 2013, 117, 16369-16387.	1.2	15
64	Interactions and visualization of bio-mimetic membrane detachment at smooth and nano-rough gold electrode surfaces. Soft Matter, 2013, 9, 5231.	1.2	16
65	Reply to Perkin et al.: Experimental observations demonstrate that ionic liquids form both bound (Stern) and diffuse electric double layers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4122.	3.3	40
66	Ionic liquids behave as dilute electrolyte solutions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9674-9679.	3.3	345
67	The Electrochemical Surface Forces Apparatus: The Effect of Surface Roughness, Electrostatic Surface Potentials, and Anodic Oxide Growth on Interaction Forces, and Friction between Dissimilar Surfaces in Aqueous Solutions. Langmuir, 2012, 28, 13080-13093.	1.6	108
68	Hydrophobic Forces, Electrostatic Steering, and Acid–Base Bridging between Atomically Smooth Self-Assembled Monolayers and End-Functionalized PEGolated Lipid Bilayers. Journal of the American Chemical Society, 2012, 134, 1746-1753.	6.6	47
69	Self-localization of polyacrylic acid molecules on polar ZnO(0001)–Zn surfaces. Physical Chemistry Chemical Physics, 2011, 13, 12959.	1.3	30
70	Pressure solution – The importance of the electrochemical surface potentials. Geochimica Et Cosmochimica Acta, 2011, 75, 6882-6892.	1.6	75
71	Effect of Surface Roughness and Electrostatic Surface Potentials on Forces Between Dissimilar Surfaces in Aqueous Solution. Advanced Materials, 2011, 23, 2294-2299.	11.1	61
72	Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments, 2011, 82, 023703.	0.6	15

#	Article	IF	CITATIONS
73	Surface chemistry and topographical changes of an electropolished NiTi shape memory alloy. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 807-811.	0.8	13
74	Stability of Phosphonic Acid Self-Assembled Monolayers on Amorphous and Single-Crystalline Aluminum Oxide Surfaces in Aqueous Solution. Langmuir, 2010, 26, 156-164.	1.6	130
75	Single Molecules as Sensors for Local Molecular Adhesion Studies. Langmuir, 2010, 26, 815-820.	1.6	23
76	Hydrogen adsorption on polar ZnO(0001)-Zn: Extending equilibrium surface phase diagrams to kinetically stabilized structures. Physical Review B, 2010, 82, .	1.1	58
77	Temperature Stabilized Surface Reconstructions at Polar ZnO(0001). Physical Review Letters, 2009, 103, 065502.	2.9	118
78	Deposition of Ag nanoparticles on fluoroalkylsilane self-assembled monolayers with varying chain length. Surface Science, 2008, 602, 3750-3759.	0.8	23
79	Comparative investigations on a series of [hexakis(1-(tetrazol-1-yl)alkane-N4)iron(II)] bis(tetrafluoroborate) spin crossover complexes: Methyl- to butyl-substituted species. Inorganica Chimica Acta, 2008, 361, 1291-1297.	1.2	17
80	Stabilization and Acidic Dissolution Mechanism of Single-Crystalline ZnO(0001) Surfaces in Electrolytes Studied by In-Situ AFM Imaging and Ex-Situ LEED. Langmuir, 2008, 24, 5350-5358.	1.6	89
81	In-situ AFM study of the crystallization and pH-dependent stability of ZnO(0001)-Zn surfaces. Materials Research Society Symposia Proceedings, 2007, 1035, 1.	0.1	1
82	Preparation and characterisation of hydroxide stabilised ZnO(0001)–Zn–OH surfaces. Physical Chemistry Chemical Physics, 2007, 9, 2406-2412.	1.3	52
83	Combining AFM imaging and elementally resolved spectroelectrochemistry for understanding stability and quality of passive films formed on Alloy 600. Materials and Corrosion - Werkstoffe Und	0.8	0