Veronika Kozlovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959319/publications.pdf

Version: 2024-02-01

81 papers 4,652 citations

42 h-index 98622 67 g-index

85 all docs 85 docs citations

85 times ranked 5131 citing authors

#	Article	IF	CITATIONS
1	Layerâ€byâ€Layer Hydrogenâ€Bonded Polymer Films: From Fundamentals to Applications. Advanced Materials, 2009, 21, 3053-3065.	11.1	377
2	Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter, 2010, 6, 3596.	1.2	243
3	Poly(methacrylic acid) Hydrogel Films and Capsules:Â Response to pH and lonic Strength, and Encapsulation of Macromolecules. Chemistry of Materials, 2006, 18, 328-336.	3.2	225
4	Hydrogen-Bonded Polymer Capsules Formed by Layer-by-Layer Self-Assembly. Macromolecules, 2003, 36, 8590-8592.	2.2	162
5	Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials. Chemistry of Materials, 2008, 20, 7474-7485.	3.2	141
6	Ultrathin Polymeric Coatings Based on Hydrogenâ€Bonded Polyphenol for Protection of Pancreatic Islet Cells. Advanced Functional Materials, 2012, 22, 3389-3398.	7.8	141
7	Hydrogen-bonded LbL shells for living cell surface engineering. Soft Matter, 2011, 7, 2364-2372.	1.2	140
8	Hydrogen-Bonded Multilayers of Thermoresponsive Polymers. Macromolecules, 2005, 38, 10523-10531.	2.2	133
9	Temperature-Sensitive Polymersomes for Controlled Delivery of Anticancer Drugs. Chemistry of Materials, 2015, 27, 7945-7956.	3.2	118
10	Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid. Soft Matter, 2014, 10, 9237-9247.	1.2	114
11	Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity. Langmuir, 2009, 25, 14017-14024.	1.6	97
12	Thermosensitive Multilayer Hydrogels of Poly(<i>N</i> -vinylcaprolactam) as Nanothin Films and Shaped Capsules. Chemistry of Materials, 2012, 24, 3707-3719.	3.2	91
13	Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses. ACS Nano, 2014, 8, 5725-5737.	7.3	90
14	Multilayer-derived, ultrathin, stimuli-responsive hydrogels. Soft Matter, 2009, 5, 4077.	1.2	89
15	Biocompatible Shaped Particles from Dried Multilayer Polymer Capsules. Biomacromolecules, 2013, 14, 3830-3841.	2.6	88
16	Theranostic Multilayer Capsules for Ultrasound Imaging and Guided Drug Delivery. ACS Nano, 2017, 11, 3135-3146.	7.3	88
17	Hydrogenâ€Bonded Multilayers of Tannic Acid as Mediators of Tâ€Cell Immunity. Advanced Healthcare Materials, 2015, 4, 686-694.	3.9	86
18	pH-Triggered softening of crosslinked hydrogen-bonded capsules. Soft Matter, 2006, 2, 966.	1.2	85

#	Article	IF	Citations
19	Surface Priming and the Self-Assembly of Hydrogen-Bonded Multilayer Capsules and Films. Macromolecules, 2005, 38, 4828-4836.	2.2	72
20	Intracellular Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Degradable Hydrogel Cubes and Degradable Hydrogel Cubes an	4.0	72
21	Shaped stimuli-responsive hydrogel particles: syntheses, properties and biological responses. Journal of Materials Chemistry B, 2017, 5, 9-35.	2.9	71
22	Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials, 2017, 128, 19-32.	5.7	69
23	Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery. Journal of Colloid and Interface Science, 2017, 506, 589-602.	5.0	67
24	Amphoteric Hydrogel Capsules:Â Multiple Encapsulation and Release Routes. Macromolecules, 2006, 39, 6191-6199.	2.2	66
25	Hydrogen-Bonded Polymer Multilayers Probed by Neutron Reflectivity. Langmuir, 2008, 24, 11346-11349.	1.6	66
26	Anisotropic Micro―and Nanoâ€Capsules. Macromolecular Rapid Communications, 2010, 31, 2041-2046.	2.0	66
27	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010, 6, 800-807.	1.2	66
28	Thermoresponsive Micelles from Double LCST-Poly(3-methyl- <i>N</i> -vinylcaprolactam) Block Copolymers for Cancer Therapy. ACS Macro Letters, 2015, 4, 308-311.	2.3	66
29	Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. Journal of Chemical Physics, 2005, 122, 014907.	1.2	64
30	pH-Controlled Permeability of Layered Hydrogen-Bonded Polymer Capsules. Macromolecules, 2006, 39, 5569-5572.	2.2	61
31	Determination of film thickness and refractive index in one measurement of phase-modulated ellipsometry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2639.	0.8	61
32	pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. Journal of Materials Chemistry B, 2014, 2, 2494-2507.	2.9	61
33	Cubical Shape Enhances the Interaction of Layerâ€byâ€Layer Polymeric Particles with Breast Cancer Cells. Advanced Healthcare Materials, 2015, 4, 2657-2666.	3.9	60
34	Tuning swelling pH and permeability of hydrogel multilayer capsules. Soft Matter, 2008, 4, 1499.	1.2	57
35	Replication of anisotropic dispersed particulates and complex continuous templates. Journal of Materials Chemistry, 2010, 20, 6587.	6.7	56
36	Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Scientific Reports, 2017, 7, 9999.	1.6	56

#	Article	IF	Citations
37	Shape switching of hollow layer-by-layer hydrogel microcontainers. Chemical Communications, 2011, 47, 8352.	2.2	55
38	pH-triggered shape response of cubical ultrathin hydrogel capsules. Soft Matter, 2012, 8, 9828.	1.2	49
39	Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 2016, 49, 8373-8386.	2.2	48
40	Polyphenolic Polymersomes of Temperature-Sensitive Poly(<i>N</i> -vinylpyrrolidone) for Anticancer Therapy. Biomacromolecules, 2017, 18, 2552-2563.	2.6	48
41	Synthesis and self-assembly of thermosensitive double-hydrophilic poly($\langle i \rangle N < i \rangle - vinylcaprolactam$)- $\langle i \rangle b < i \rangle - vinyl < i \rangle N < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < i \rangle - vinyl < i \rangle b < vinyl < i $	2.5	46
42	Biodegradable self-reporting nanocomposite films of poly(lactic acid) nanoparticles engineered by layer-by-layer assembly. Polymer, 2010, 51, 4127-4139.	1.8	43
43	Self-Assemblies of Thermoresponsive Poly(<i>N</i> -vinylcaprolactam) Polymers for Applications in Biomedical Field. ACS Applied Polymer Materials, 2020, 2, 26-39.	2.0	43
44	Highly efficient delivery of potent anticancer iminoquinone derivative by multilayer hydrogel cubes. Acta Biomaterialia, 2017, 58, 386-398.	4.1	37
45	Manganoporphyrin-Polyphenol Multilayer Capsules as Radical and Reactive Oxygen Species (ROS) Scavengers. Chemistry of Materials, 2018, 30, 344-357.	3.2	36
46	Hydrogen-Bonded Multilayers of Silk Fibroin: From Coatings to Cell-Mimicking Shaped Microcontainers. ACS Macro Letters, 2012, 1, 384-387.	2.3	35
47	Highly swellable ultrathin poly(4-vinylpyridine) multilayer hydrogels with pH-triggered surface wettability. Soft Matter, 2013, 9, 9420.	1.2	35
48	Temperature-Responsive Polymersomes of Poly(3-methyl- <i>N</i> Vi>vinylcaprolactam)- <i>block</i> Poly(<i>N</i> Vi)-vinylpyrrolidone) To Decrease Doxorubicin-Induced Cardiotoxicity. Biomacromolecules, 2019, 20, 3989-4000.	2.6	31
49	Secondary structure of silaffin at interfaces and titania formation. Journal of Materials Chemistry, 2010, 20, 5242.	6.7	30
50	Ultrasoundâ€Triggered Delivery of Anticancer Therapeutics from MRIâ€Visible Multilayer Microcapsules. Advanced Therapeutics, 2018, 1, 1800051.	1.6	30
51	Temperature-responsive properties of poly(N-vinylcaprolactam) multilayer hydrogels in the presence of Hofmeister anions. Materials Research Express, 2014, 1, 035039.	0.8	29
52	Tailoring Architecture of Nanothin Hydrogels: Effect of Layering on pH-Triggered Swelling. ACS Macro Letters, 2013, 2, 226-229.	2.3	28
53	Stratified Temperature-Responsive Multilayer Hydrogels of Poly(<i>N</i> -vinylpyrrolidone) and Poly(<i>N</i> -vinylcaprolactam): Effect of Hydrogel Architecture on Properties. Macromolecules, 2016, 49, 6953-6964.	2.2	27
54	Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers, 2018, 10, 1342.	2.0	26

#	Article	IF	Citations
55	Localized Immunosuppression With Tannic Acid Encapsulation Delays Islet Allograft and Autoimmune-Mediated Rejection. Diabetes, 2020, 69, 1948-1960.	0.3	25
56	Multilayer Hydrogel Capsules of Interpenetrated Network for Encapsulation of Small Molecules. Langmuir, 2018, 34, 11832-11842.	1.6	22
57	pH-Controlled Assembly and Properties of LbL Membranes from Branched Conjugated Poly(alkoxythiophene sulfonate) and Various Polycations. Langmuir, 2010, 26, 7138-7147.	1.6	20
58	Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules, 2018, 19, 4084-4097.	2.6	20
59	Tuning assembly and enzymatic degradation of silk/poly(N-vinylcaprolactam) multilayers via molecular weight and hydrophobicity. Soft Matter, 2015, 11, 5133-5145.	1.2	19
60	Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight. Macromolecules, 2015, 48, 8585-8593.	2.2	18
61	Carbohydrate Sensing Using Water-Soluble Poly(methacrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 507 T 1341-1349.	d (acid)- <i 2.0</i 	>co-3-(18
62	Multilayer Microcapsules with Shell-Chelated ⁸⁹ Zr for PET Imaging and Controlled Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56792-56804.	4.0	16
63	Effect of Temperature and Hydrophilic Ratio on the Structure of Poly(<i>N</i> -vinylcaprolactam)- <i>block</i> -poly(dimethylsiloxane)- <i>block</i> -poly(<i>N</i> -vinylcaprolactam) Polymersomes. ACS Applied Polymer Materials, 2019, 1, 722-736.	2.0	15
64	Anisotropic Particles through Multilayer Assembly. Macromolecular Bioscience, 2022, 22, e2100328.	2.1	14
65	Nanostructured highly-swollen hydrogels: Complexation with amino acids through copper (II) ions. Polymer, 2015, 74, 94-107.	1.8	13
66	Poly(<i>N</i> -vinylpyrrolidone)- <i>block</i> -Poly(dimethylsiloxane)- <i>block</i> -Poly(<i>N</i> -vinylpyrrolidone) Triblock Copolymer Polymersomes for Delivery of PARP1 siRNA to Breast Cancers. ACS Applied Bio Materials, 2022, 5, 1670-1682.	2.3	13
67	Shape Recovery of Spherical Hydrogen-Bonded Multilayer Capsules after Osmotically Induced Deformation. Langmuir, 2019, 35, 10910-10919.	1.6	10
68	Xenotransplantation of tannic acidâ€encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation, 2021, 28, e12706.	1.6	10
69	Localized entrapment of green fluorescent protein within nanostructured polymer films. Soft Matter, 2011, 7, 11453.	1.2	9
70	Polymeric Particulates of Controlled Rigidity for Biomedical Applications. ACS Applied Polymer Materials, 2021, 3, 2274-2289.	2.0	9
71	Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems. Advances in Experimental Medicine and Biology, 2017, 1009, 239-262.	0.8	7
72	Architecture of Hydrated Multilayer Poly(methacrylic acid) Hydrogels: The Effect of Solution pH. ACS Applied Polymer Materials, 2020, 2, 2260-2273.	2.0	7

#	Article	IF	CITATIONS
7 3	Free-Standing Thin Hydrogels: Effects of Composition and pH-Dependent Hydration on Mechanical Properties. ACS Applied Polymer Materials, 2021, 3, 3960-3971.	2.0	7
74	Photocatalytic Nanocomposite Microsponges of Polylactide–Titania for Chemical Remediation in Water. ACS Applied Polymer Materials, 2020, 2, 5188-5197.	2.0	6
75	Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules, 2022, 27, 3485.	1.7	6
76	Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly. Langmuir, 2022, 38, 7867-7888.	1.6	6
77	Temperature controlled transformations of giant unilamellar vesicles of amphiphilic triblock copolymers synthesized via microfluidic mixing. Applied Surface Science Advances, 2021, 5, 100101.	2.9	5
78	Complete pH-Dependent Shape Recovery in Cubical Hydrogel Capsules after Large Osmotic Deformations. Macromolecules, 2021, 54, 9712-9723.	2,2	5
79	Dampening Antigen-Specific T Cell Responses with Antigens Encapsulated in Polyphenolic Microcapsules. ImmunoHorizons, 2020, 4, 530-545.	0.8	5
80	HYDROGEN-BONDED LAYER-BY-LAYER POLYMER FILMS AND CAPSULES. , 2009, , 323-362.		2
81	Diabetes: Hydrogen-Bonded Multilayers of Tannic Acid as Mediators of T-Cell Immunity (Adv.) Tj ETQq1 1 0.7843	\$14 ₃ rgBT /(Overlock 10 T