
Julien Brillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Identification of Bacterial Epigenetic Regulations Would Benefit From a Better Exploitation of Methylomic Data. Frontiers in Microbiology, 2021, 12, 685670.	3.5	8
2	<i>Photorhabdus</i> antibacterial Rhs polymorphic toxin inhibits translation through ADP-ribosylation of 23S ribosomal RNA. Nucleic Acids Research, 2021, 49, 8384-8395.	14.5	21
3	Role of the Photorhabdus Dam methyltransferase during interactions with its invertebrate hosts. PLoS ONE, 2019, 14, e0212655.	2.5	3
4	The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated Adenines. Scientific Reports, 2018, 8, 12091.	3.3	27
5	An antimicrobial peptide-resistant minor subpopulation of Photorhabdus luminescens is responsible for virulence. Scientific Reports, 2017, 7, 43670.	3.3	23
6	DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Frontiers in Microbiology, 2017, 8, 1671.	3.5	16
7	Expression of the genes encoding the CasK/R two-component system and the DesA desaturase duringBacillus cereuscold adaptation. FEMS Microbiology Letters, 2016, 363, fnw174.	1.8	11
8	Role of fatty acids in Bacillus environmental adaptation. Frontiers in Microbiology, 2015, 6, 813.	3.5	84
9	Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth. International Journal of Food Microbiology, 2015, 213, 110-117.	4.7	13
10	Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Research Notes, 2015, 8, 329.	1.4	21
11	The CasKR Two-Component System Is Required for the Growth of Mesophilic and Psychrotolerant Bacillus cereus Strains at Low Temperatures. Applied and Environmental Microbiology, 2014, 80, 2493-2503.	3.1	19
12	A multicomponent sugar phosphate sensor system specifically induced in <i>Bacillus cereus</i> during infection of the insect gut. FASEB Journal, 2012, 26, 3336-3350.	0.5	11
13	Identification of <i>Bacillus cereus</i> Genes Specifically Expressed during Growth at Low Temperatures. Applied and Environmental Microbiology, 2010, 76, 2562-2573.	3.1	41
14	The YvfTU Two-component System is involved in plcR expression in Bacillus cereus. BMC Microbiology, 2008, 8, 183.	3.3	28
15	Characterization of a small PlcR-regulated gene co-expressed with cereolysin O. BMC Microbiology, 2007, 7, 52.	3.3	14
16	The PhIA Hemolysin from the Entomopathogenic Bacterium Photorhabdus luminescens Belongs to the Two-Partner Secretion Family of Hemolysins. Journal of Bacteriology, 2002, 184, 3871-3878.	2.2	75