Xian Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959256/publications.pdf

Version: 2024-02-01

148	2,644	27	40
papers	citations	h-index	g-index
148	148	148	2089
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Composites Science and Technology, 2018, 164, 59-64.	7.8	264
2	Precipitation process along dislocations in Al–Cu–Mg alloy during artificial aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 706-714.	5.6	71
3	Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 411-422.	5.6	64
4	Adhesion and fracture toughness at \hat{l} ±-Ti(0001)/TiC(111): A first-principles investigation. Applied Surface Science, 2013, 286, 240-248.	6.1	59
5	Variant selection and the strengthening effect of S precipitates at dislocations in Al–Cu–Mg alloy. Acta Materialia, 2011, 59, 2412-2422.	7.9	58
6	Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy. Materials Chemistry and Physics, 2019, 238, 121841.	4.0	51
7	Theoretical investigations on phase stability, elastic constants and electronic structures of D022-and L12-Al3Ti under high pressure. Journal of Alloys and Compounds, 2013, 556, 214-220.	5.5	48
8	Investigation of interfacial reaction in SiC fiber reinforced Ti–43Al–9V composites. Intermetallics, 2013, 33, 54-59.	3.9	48
9	Aligned cellulose/nanodiamond plastics with high thermal conductivity. Journal of Materials Chemistry C, 2018, 6, 13108-13113.	5.5	46
10	First-principles calculation on \hat{l}^2 -SiC(111)/ \hat{l} ±-WC(0001) interface. Journal of Applied Physics, 2014, 115, .	2.5	39
11	First-principles calculation of W/WC interface: Atomic structure, stability and electronic properties. Applied Surface Science, 2015, 324, 205-211.	6.1	39
12	Development of CVD Ti-containing films. Progress in Materials Science, 2013, 58, 1490-1533.	32.8	38
13	Nano-precipitates strengthened non-equiatomic medium-entropy alloy with outstanding tensile properties. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139218.	5.6	38
14	Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment. Transactions of Nonferrous Metals Society of China, 2012, 22, 2226-2232.	4.2	37
15	The fabrication and property of SiC fiber reinforced copper matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 244-250.	5.6	36
16	Effects of substrate temperature on the structure, residual stress and nanohardness of Ti6Al4V films prepared by magnetron sputtering. Applied Surface Science, 2016, 370, 53-58.	6.1	36
17	HRTEM and HAADF-STEM tomography investigation of the heterogeneously formed S (Al ₂ CuMg) precipitates in Al–Cu–Mg alloy. Philosophical Magazine, 2013, 93, 1843-1858.	1.6	35
	Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite.		

#	Article	IF	Citations
19	Surface gradient nanostructures in high speed machined 7055 aluminum alloy. Journal of Alloys and Compounds, 2017, 726, 367-377.	5.5	34
20	Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties. Journal of Alloys and Compounds, 2020, 833, 155074.	5.5	33
21	Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures. Journal of Materials Science and Technology, 2022, 98, 197-204.	10.7	33
22	An investigation of Ti-43Al-9V/Ti-6Al-4V interface by diffusion bonding. Intermetallics, 2013, 36, 127-132.	3.9	31
23	First-principles study of stability and properties on \hat{l}^2 -SiC/TiC(111) interface. Journal of Applied Physics, 2013, 114, .	2.5	31
24	Thermal stability analysis of a lightweight Al-Zn-Mg-Cu alloy by TEM and tensile tests. Materials Characterization, 2019, 153, 271-283.	4.4	31
25	Hall-petch relationship and heterogeneous strength of CrCoNi medium-entropy alloy. Materials Chemistry and Physics, 2020, 251, 123073.	4.0	31
26	First-principles study of the Al(001)/Al3Ti(001) interfacial properties. Computational Materials Science, 2012, 62, 136-141.	3.0	30
27	Observing the dynamic <mml:math altimg="si8.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfenced close="}" open="{"><mml:mrow><mml:mn>10</mml:mn><mml:mo><mml:mo><mml:mo></mml:mo><mml:mo>\display="true">\hata-</mml:mo></mml:mo></mml:mo></mml:mrow></mml:mfenced></mml:math>	5.2 twining	30
28	Microstructure, microtexture and precipitation in the ultrafine-grained surface layer of an Al-Zn-Mg-Cu alloy processed by sliding friction treatment. Materials Characterization, 2017, 123, 189-197.	4.4	30
29	Synthesis and Characterization of Ternary Polyaniline/Barium Ferrite/Reduced Graphene Oxide Composite as Microwave-Absorbing Material. Journal of Electronic Materials, 2019, 48, 4400-4408.	2.2	29
30	Interfacial properties and electronic structure of \hat{l}^2 -SiC(111)/ \hat{l} ±-Ti(0001): A first principle study. Journal of Applied Physics, 2013, 113, .	2.5	28
31	Precipitation sequence of î· phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy during artificial aging. Transactions of Nonferrous Metals Society of China, 2014, 24, 2061-2066.	4.2	26
32	Theoretical calculations on the adhesion, stability, electronic structure and bonding of SiC/W interface. Applied Surface Science, 2014, 314, 896-905.	6.1	25
33	Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 Titanium alloy with starting equiaxed microstructure studied by EBSD. Materials Characterization, 2019, 151, 151-165.	4.4	25
34	The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu–matrix composites. Scripta Materialia, 2008, 58, 401-404.	5.2	24
35	Microstructure of SiC fiber fabricated by two-stage chemical vapor deposition on tungsten filament. Journal of Crystal Growth, 2010, 313, 56-61.	1.5	24
36	Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy. Materials Express, 2019, 9, 291-298.	0.5	24

#	Article	IF	CITATIONS
37	Twin relationships between nanotwins inside A–C type variant pair in Ni–Mn–Ga alloy. Acta Materialia, 2015, 84, 484-496.	7.9	23
38	Effect of Mo coating on the interface and mechanical properties of SiC fiber reinforced Ti6Al4V composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 286-292.	5 . 6	22
39	Deformation twinning in response to cracking in Al: An in situ TEM and molecular dynamics study. Scripta Materialia, 2018, 145, 28-32.	5.2	22
40	Mechanical and thermal properties of multiwalled carbon-nanotube-reinforced Al2O3 nanocomposites. Ceramics International, 2020, 46, 17449-17460.	4.8	22
41	Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6Al-4V composites. Transactions of Nonferrous Metals Society of China, 2008, 18, 523-530.	4.2	21
42	The analysis on transverse tensile behavior of SiC/Ti–6Al–4V composites by finite element method. Materials & Design, 2010, 31, 3949-3953.	5.1	21
43	Microstructure evolution of C/Mo double-coated SiC fiber reinforced Ti6Al4V composites. Materials Science & Science and Processing, 2014, 597, 95-101.	5. 6	21
44	Molecular dynamic simulation of nanocrystal formation and tensile deformation of TiAl alloy. RSC Advances, 2017, 7, 48315-48323.	3 . 6	21
45	Interfacial reaction studies of B4C-coated and C-coated SiC fiber reinforced Ti–43Al–9V composites. Intermetallics, 2014, 50, 14-19.	3.9	20
46	Effect of cryorolling and ageing on the microstructure and mechanical properties of Al 7085 alloy. Materials Science & Description on the microstructure and Materials: Properties, Microstructure and Processing, 2022, 832, 142482.	5 . 6	20
47	Effect of C/Mo duplex coating on the interface and tensile strength of SiCf/Ti-21Al-29Nb composites. Journal of Alloys and Compounds, 2017, 721, 653-660.	5.5	19
48	Structural evolution of TiAl during rapid solidification processing revealed by molecular dynamics simulations. RSC Advances, 2016, 6, 54763-54767.	3.6	18
49	High temperature tensile properties, fracture behaviors and nanoscale precipitate variation of an Al–Zn–Mg–Cu alloy. Progress in Natural Science: Materials International, 2020, 30, 63-73.	4.4	18
50	Investigations of interfacial reaction and toughening mechanisms of Ta fiber-reinforced TiAl-matrix composites. Materials Characterization, 2022, 183, 111584.	4.4	18
51	Study on longitudinal tensile properties of SiCf/Ti–6Al–4V composites with different interfacial shear strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 88-93.	5 . 6	17
52	Effect of Cu/Mo duplex coating on the interface and property of SiCf/Ti6Al4V composite. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 535, 6-11.	5 . 6	17
53	Preparation and mechanical properties of graphene-reinforced alumina-matrix composites. Chemical Physics Letters, 2020, 754, 137765.	2.6	17
54	Microstructure and grain growth of the matrix of SiCf/Ti–6Al–4V composites prepared by the consolidation of matrix-coated fibers in the β phase field. Composites Part B: Engineering, 2013, 52, 155-163.	12.0	16

#	Article	IF	Citations
55	Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7756-7764.	10.3	16
56	The phase, morphology and surface characterization of Ti–Mo alloy films prepared by magnetron sputtering. RSC Advances, 2017, 7, 52595-52603.	3.6	15
57	Dynamic interactions between non-screw dislocations and stacking faults during in situ straining in a TEM. Materials Characterization, 2019, 148, 292-296.	4.4	15
58	Microstructure and mechanical property of high growth rate SiC via continuous hotâ€wire CVD. Journal of the American Ceramic Society, 2019, 102, 5656-5667.	3.8	15
59	Heterogeneous precipitates facilitate excellent mechanical properties in non-equiatomic medium-entropy alloy. Intermetallics, 2021, 129, 107036.	3.9	15
60	Excellent thermal stability and their origins in $\hat{I}^3 \hat{a} \in \mathbb{Z}^2$ precipitation-strengthened medium-entropy alloys. Scripta Materialia, 2022, 212, 114576.	5.2	15
61	Analysis of interfacial behavior in titanium matrix composites by using the finite element method (SCS-6/Ti55). Scripta Materialia, 2007, 56, 533-536.	5. 2	14
62	First-principles investigation on the electronic and magnetic properties of cubic Be0.75Mn0.25X (X=S,) Tj ETQq0	0 0 o rgBT	Oygrlock 10
63	Microstructure and thermal residual stress analysis of SiC fiber through Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 1306-1311.	2.5	14
64	Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced \hat{I}^3 -TiAl matrix composites. Transactions of Nonferrous Metals Society of China, 2016, 26, 1317-1325.	4.2	14
65	Distributions of grains and precipitates in gradient lamellae Alâ€"Znâ€"Mgâ€"Cu alloy by ultrasonic surface rolling processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141911.	5.6	14
66	Erosion behaviors and the control of fiber structure in Al2O3,f/TiAl composites. Journal of Alloys and Compounds, 2021, 882, 160734.	5.5	14
67	SEM in situ study on the mechanical behaviour of SiCf/Ti composite subjected to axial tensile load. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4507-4515.	5.6	13
68	A review on the research progress of push-out method in testing interfacial properties of SiC fiber-reinforced titanium matrix composites. Composite Interfaces, 2015, 22, 367-386.	2.3	13
69	Improving the mechanical properties of titanium films by texture strengthening. Materials Characterization, 2017, 127, 365-370.	4.4	13
7 0	The depth-dependent gradient deformation bands in a sliding friction treated Al-Zn-Mg-Cu alloy. Materials Characterization, 2017, 132, 269-279.	4.4	13
71	Microstructure, properties and thermal stability of W/B4C multilayer coating synthesized by ion beam sputtering. Applied Surface Science, 2019, 464, 10-20.	6.1	13
72	Effect of nickel on the interface and mechanical properties of SiCf/Cu composites. Journal of Alloys and Compounds, 2009, 469, 237-243.	5.5	12

#	Article	IF	CITATIONS
73	Microstructure, tensile strength and thermostability of W-core SiC fibers with or without carbon coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 265-276.	5.6	12
74	Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-l 2 system. Applied Surface Science, 2017, 406, 62-68.	6.1	12
75	Twinning-assisted void initiation and crack evolution in Cu thin film: An in situ TEM and molecular dynamics study. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 336-340.	5.6	12
76	Mechanical and electrical properties of carbon nanotube-reinforced Al2O3 nanocomposites. Journal of Materials Science, 2020, 55, 8728-8740.	3.7	12
77	Temperature-dependent deformation processes in two-phase TiAlÂ+ÂTi3Al nano-polycrystalline alloys. Materials and Design, 2021, 199, 109422.	7.0	12
78	Reaction diffusion in continuous SiC fiber reinforced Ti matrix composite. Transactions of Nonferrous Metals Society of China, 2007, 17, 27-34.	4.2	11
79	Titanium interlayers as adhesion promoters for SiCf/Cu composites. Scripta Materialia, 2007, 56, 569-572.	5.2	11
80	An analysis of thermal residual stresses in SiCf/Cu composites when TiC or Ni as binder. Materials & Design, 2008, 29, 1755-1761.	5.1	11
81	Effect of C/Mo duplex coating on the interface and mechanical properties of SiCf/Ti6Al4V composites. Materials Science & Dept. Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 566, 47-53.	5.6	11
82	Development of advanced electron tomography in materials science based on TEM and STEM. Transactions of Nonferrous Metals Society of China, 2014, 24, 3031-3050.	4.2	11
83	Micromechanical analysis of fiber and titanium matrix interface by shear lag method. Composites Part B: Engineering, 2015, 79, 466-475.	12.0	11
84	Effect of deep surface rolling on microstructure and properties of AZ91 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 1424-1429.	4.2	11
85	The effect of fabrication processes on the mechanical and interfacial properties of SiCf/Cu–matrix composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2102-2108.	7.6	10
86	Microstructure evolution of TiAl matrix in the process of magnetron sputtering and hot isostatic pressing for fabricating TiAl/SiCf composites. Intermetallics, 2013, 39, 5-10.	3.9	10
87	Interfacial reaction in SiCf/Ti-6Al-4V composite by using transmission electron microscopy. Materials Characterization, 2015, 109, 206-215.	4.4	10
88	Structure of A–C Type Intervariant Interface in Nonmodulated Martensite in a Ni–Mn–Ga Alloy. ACS Applied Materials & Date (1985) and Samp; Interfaces, 2016, 8, 16985-16996.	8.0	10
89	Toughness enhancement and thermal properties of graphene-CNTs reinforced Al2O3 ceramic hybrid nanocomposites. Chemical Physics Letters, 2021, 781, 138978.	2.6	10
90	Analysis on the interfacial shear strength of fiber reinforced titanium matrix composites by shear lag method. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 262-267.	5.6	9

#	Article	IF	Citations
91	Quasicrystal dissolution and performance of isothermally heat-treated Mg–Zn–Y alloy. Rare Metals, 2015, 34, 452-456.	7.1	9
92	Grain refinement and texture evolution during high precision machining of a Ni-based superalloy. Philosophical Magazine, 2017, 97, 28-42.	1.6	9
93	The structural characterizations of Ti-17 alloy films prepared by magnetron sputtering. Applied Surface Science, 2018, 427, 774-781.	6.1	9
94	The gradient structure in the surface layer of an Al-Zn-Mg-Cu alloy subjected to sliding friction treatment. Results in Physics, 2019, 13, 102318.	4.1	9
95	The Fracture Behavior of 7085-T74 Al Alloy Ultra-Thick Plate During High Cycle Fatigue. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3248-3255.	2.2	9
96	Raman scattering characterization of a carbon coating after low-energy argon ion bombardment. Physica B: Condensed Matter, 2011, 406, 3876-3884.	2.7	8
97	Effect of Hot Isostatic Pressing Parameters on the Microstructures and Grain Growth Behavior of the Matrix of SiCf/Ti-6Al-4V Composites. Rare Metal Materials and Engineering, 2014, 43, 1839-1845.	0.8	8
98	Investigation of interfacial reaction product of SiCf/C/Mo/Ti6Al4V composite through Raman spectroscopy. Applied Physics Letters, 2014, 104, .	3.3	8
99	Raman investigation of defective SiC nanocrystals. Journal of Raman Spectroscopy, 2015, 46, 1225-1229.	2.5	8
100	Structural evolution of copper-silver bimetallic nanowires with core-shell structure revealed by molecular dynamics simulations. Computational Materials Science, 2017, 137, 289-296.	3.0	8
101	The influence of interface reaction zone on interfacial fracture toughness of SiC fiber reinforced titanium matrix composites. Composite Interfaces, 2018, 25, 929-947.	2.3	8
102	Role of H2 and Ar as the diluent gas in continuous hot-wire CVD synthesis of SiC fiber. Journal of the European Ceramic Society, 2022, 42, 3135-3147.	5.7	8
103	Kinetics of Interfacial Reaction in SiC _f /Ti6Al4V Composites. Materials Science Forum, 2007, 546-549, 1627-1632.	0.3	7
104	STEM-HAADF tomography investigation of grain boundary precipitates in Al–Cu–Mg alloy. Materials Letters, 2011, 65, 2808-2811.	2.6	7
105	Finite element analysis of stress distribution and burst failure of SiCf/Ti–6Al–4V composite ring. Transactions of Nonferrous Metals Society of China, 2015, 25, 261-270.	4.2	7
106	Raman investigation of chemical reaction product in thermalâ€treated SiC _f /C/Mo/Ti6Al4V composite. Journal of Raman Spectroscopy, 2015, 46, 182-188.	2.5	7
107	New role of screw dislocation in twin lamella during deformation: An in situ TEM study at the atomic scale. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 125-129.	5.6	7
108	Atomic insight into the interfacial bonding and role of carbon atoms on β-SiC(1Â1Â1)/Al2MgC2(0Â0Â0Â1): A first-principles study. Applied Surface Science, 2020, 511, 145633.	6.1	7

#	Article	IF	Citations
109	Multi-length scale Monte Carlo simulation of the growth process of SiC film by chemical vapor deposition. Applied Surface Science, 2008, 255, 3342-3349.	6.1	6
110	Grain growth simulation of {111} and {110} oriented CVD–SiC film by Potts Monte Carlo. Computational Materials Science, 2009, 44, 1281-1285.	3.0	6
111	A three-dimensional atomic scale simulations of CVD-SiC film growth in $\{111\}$, $\{110\}$ and $\{100\}$ family of planes. Computational Materials Science, 2011, 50, 2338-2346.	3.0	6
112	In Situ HRTEM Observation of Electron-Irradiation-Induced Amorphization and Dissolution of the E (Al18Cr2Mg3) Phase in 7475 Al Alloy. Acta Metallurgica Sinica (English Letters), 2015, 28, 147-151.	2.9	6
113	Effect of solution and aging treatment on the microstructure and tensile properties of SiCf/C/Mo/Ti2AlNb composites. Intermetallics, 2018, 95, 33-39.	3.9	6
114	Grain-scale growth simulation of SiC film with the Chemical Vapor Deposition method. Computational Materials Science, 2012, 59, 128-132.	3.0	5
115	Twinning Behaviour in the Intermetallic Compound Al18Cr2Mg3. Acta Metallurgica Sinica (English) Tj ETQq1	l 0.784314 rg	gBŢ /Overlac
116	Raman Investigation of Interfacial Reaction Product of SiC _f /Ti43Al9V Composite. Journal of the American Ceramic Society, 2015, 98, 1937-1941.	3.8	5
117	Finite element modeling of consolidation process of SiC fiber-reinforced titanium matrix composites via matrix-coated fiber method. Rare Metals, 2015, 34, 844-850.	7.1	5
118	Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition. Materials Chemistry and Physics, 2016, 184, 189-196.	4.0	5
119	Effect of rate dependence of crack propagation processes on amorphization in Al. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 71-77.	5. 6	5
120	Effect of quenching on the matrix microstructure of SiCf/Ti–6Al–4V composites. Journal of Materials Science, 2018, 53, 1922-1932.	3.7	5
121	Thermodynamic evidence of \hat{l} ±-Al heterogeneous nucleation on Al2MgC2 and the interfacial bonding mechanism: A first-principles study. Journal of Solid State Chemistry, 2020, 288, 121431.	2.9	5
122	High ZT Value of Pure SnSe Polycrystalline Materials Prepared by High-Energy Ball Milling plus Hot Pressing Sintering. ACS Applied Materials & Interfaces, 2021, 13, 43011-43021.	8.0	5
123	Microstructure of SiC Fiber Fabricated by Three-stage Chemical Vapor Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 25, 1281-1285.	1.3	5
124	Evaluation on the interfacial fracture toughness of fiber-reinforced titanium matrix composites by push out test. Composite Interfaces, 2016, 23, 557-569.	2.3	4
125	Prediction of Limit Rotation Speeds of SiC _f /Ti Composite Rings by Finite Element Analysis. Advanced Engineering Materials, 2017, 19, 1600545.	3.5	4
126	Electron tomography of dislocations in an Al-Cu-Mg alloy. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012018.	0.6	4

#	Article	IF	Citations
127	Observing the dynamic rotation and annihilation process of an isolated nanograin at the atomic scale in Al. Materials Characterization, 2019, 147, 311-314.	4.4	4
128	In situ atomic-scale observation of a novel lattice reorienting process in pure Ti. Scripta Materialia, 2019, 166, 144-148.	5.2	4
129	Microstructure, mechanical, and thermal properties of graphene and carbon nanotube-reinforced Al2O3 nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 13656-13672.	2.2	4
130	Study on the Relationship between High Temperature Mechanical Properties and Precipitates Evolution of 7085 Al Alloy after Long Time Thermal Exposures. Metals, 2021, 11, 1483.	2.3	4
131	Preparation of Al2O3 coating on Nb fiber and the effect on interfacial microstructure of Nbf/TiAl composite. Materials Characterization, 2022, 190, 112061.	4.4	4
132	Fatigue behaviors of C/Mo double-coated SiC fiber-reinforced Ti6Al4V composites with varied interfacial microstructure. Composite Interfaces, 2015, 22, 689-701.	2.3	3
133	Microstructure and Grain Growth of the Matrix of SiCf/Ti-6Al-4V Composites Prepared by the Consolidation of Matrix-Coated Fibers in the $\hat{l}\pm +\hat{l}^2$ Phase Field. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 887-893.	2.2	3
134	Effect of interface orientation on the adhesion strength and fracture toughness of Ni/CrN interfaces by first-principles study. Materials Research Express, 2021, 8, 096507.	1.6	3
135	Experimental and theoretical study of diffusion bonding in fabricating Ti matrix composite. Materials Science & Science & Properties, Microstructure and Processing, 2007, 458, 202-209.	5.6	2
136	C/Ti/Cu interfacial reaction in SiCf/Cu composites. Rare Metals, 2011, 30, 396-400.	7.1	2
137	Influence of CH3SiCl3 consistency on growth process of SiC film by kinetic monte carlo method. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 871-875.	1.0	2
138	Formation of interfacial microstructures of Moâ€coating modified SiC _f /Mo/Tiâ€6Alâ€4V composites. Surface and Interface Analysis, 2013, 45, 667-671.	1.8	2
139	Theoretical investigation on the interfacial properties of carbon deposited on \hat{l}^2 -SiC(111) substrate. Diamond and Related Materials, 2016, 62, 22-29.	3.9	2
140	Fibers made by chemical vapor deposition. , 2018, , 929-991.		2
141	Temperature-dependent deformation in silver-particle-covered copper nanowires by molecular dynamics simulation. Journal of Materiomics, 2022, 8, 68-78.	5 . 7	2
142	Effect of C/Mo Duplex-coating on Thermal Residual Stresses in SiCf/Ti2AlNb Composites. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 526-532.	1.0	2
143	Study of matrix microstructure of SiC _f /Ti–43Al–9V composites. Materials Science and Technology, 2013, 29, 581-586.	1.6	1
144	New lightweight mirror billet: Connection of $\langle i \rangle \hat{l}^3 \langle i \rangle$ -TiAl and K9 glass with Ti6Al4V foil as interlayer. Materials Science and Technology, 2013, 29, 250-254.	1.6	1

XIAN LUO

#	Article	IF	CITATION
145	Influence of Supersaturation on Growth Behavior and Mechanical Properties of Polycrystalline 3C-SiC on W Wire Substrate. Metals, 2022, 12, 881.	2.3	1
146	Influence of Substrate Material on Tensile Behavior and Fracture Characteristics of SiC by Chemical Vapour Deposition. Advanced Materials Research, 0, 213, 272-275.	0.3	0
147	Local texture of three-stage CVD SiC fibre by precession electron diffraction (PED) and XRD. Materials Science and Technology, 2014, 30, 1751-1757.	1.6	0
148	Theoretical investigation on the adsorption and dissociation behaviors of TiCl4 on pyrolytic carbon surface. Applied Surface Science, 2018, 427, 156-165.	6.1	0