Tao Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959235/publications.pdf

Version: 2024-02-01

135	10,942	58 h-index	102
papers	citations		g-index
136	136	136	12887
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A bibliometric and content analysis of policy instruments on facilitating the development of Aprefabricated construction in China. Engineering, Construction and Architectural Management, 2023, 30, 3976-3996.	3.1	6
2	Oxygen defects-induced charge transfer in Bi7O9I3 for enhancing oxygen activation and visible-light degradation of BPA. Chemosphere, 2022, 286, 131783.	8.2	17
3	Adsorptive and reductive removal of toxic and radioactive metal ions by nanoscale zero-valent iron–based nanomaterials from wastewater. , 2022, , 195-228.		O
4	Surface enhanced FRET for sensitive and selective detection of doxycycline using organosilicon nanodots as donors. Analytica Chimica Acta, 2022, 1197, 339530.	5.4	15
5	Layered double hydroxides nanosheets in-situ anchored on ultrathin MXenes for enhanced U(VI) and Eu(III) trapping: Excavating from selectivity to mechanism. Separation and Purification Technology, 2022, 288, 120641.	7.9	16
6	EVALUATION OF POLICIES ON THE DEVELOPMENT OF PREFABRICATED CONSTRUCTION IN CHINA: AN IMPORTANCE-PERFORMANCE ANALYSIS. Journal of Green Building, 2022, 17, 149-168.	0.8	7
7	Ti ₃ C ₂ nanosheets with broad-spectrum antioxidant activity for cytoprotection against oxidative stress. RSC Advances, 2022, 12, 11128-11138.	3.6	12
8	EVALUATION OF POLICIES ON THE DEVELOPMENT OF PREFABRICATED CONSTRUCTION IN CHINA: AN IMPORTANCE-PERFORMANCE ANALYSIS. Journal of Green Building, 2022, 17, 149-168.	0.8	1
9	Magnetic Nanofibrous Scaffolds Accelerate the Regeneration of Muscle Tissue in Combination with Extra Magnetic Fields. International Journal of Molecular Sciences, 2022, 23, 4440.	4.1	3
10	Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization. Radiochimica Acta, 2022, .	1.2	1
11	Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL. Technology in Society, 2022, 70, 102042.	9.4	9
12	Molybdenum (VI)â€oxo Clusters Incorporation Activates gâ€C ₃ N ₄ with Simultaneously Regulating Charge Transfer and Reaction Centers for Boosting Photocatalytic Performance. Advanced Functional Materials, 2022, 32, .	14.9	41
13	A Contrast Examination of Proinflammatory Effects on Kidney Function for Î ³ -Fe2O3 NP and Gadolinium Dimeglumine. International Journal of Nanomedicine, 2021, Volume 16, 2271-2282.	6.7	4
14	Removal of organic compounds by nanoscale zero-valent iron and its composites. Science of the Total Environment, 2021, 792, 148546.	8.0	242
15	A novel CD123-targeted therapeutic peptide loaded by micellar delivery system combats refractory acute myeloid leukemia. Journal of Hematology and Oncology, 2021, 14, 193.	17.0	8
16	Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Science of the Total Environment, 2020, 699, 134341.	8.0	102
17	Stiffness of cationized gelatin nanoparticles is a key factor determining RNAi efficiency in myeloid leukemia cells. Chemical Communications, 2020, 56, 1255-1258.	4.1	19
18	Co-delivery of homoharringtonine and doxorubicin boosts therapeutic efficacy of refractory acute myeloid leukemia. Journal of Controlled Release, 2020, 327, 766-778.	9.9	11

#	Article	IF	CITATIONS
19	Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chemical Engineering Journal, 2020, 390, 124642.	12.7	186
20	Synthesis of a flower-like MoS ₂ /carbon nanocomposite with enhanced adsorption performance toward Eu(<scp>iii</scp>): the cooperative effects between S atoms and carboxyl groups. Environmental Science: Water Research and Technology, 2020, 6, 1482-1494.	2.4	12
21	Arsenic Sulfide Nanoformulation Induces Megakaryocytic Differentiation through Histone Deacetylase Inhibition. Advanced Therapeutics, 2020, 3, 1900151.	3.2	6
22	In Vivo Metabolic Response upon Exposure to Gold Nanorod Core/Silver Shell Nanostructures: Modulation of Inflammation and Upregulation of Dopamine. International Journal of Molecular Sciences, 2020, 21, 384.	4.1	7
23	Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment. Science of the Total Environment, 2019, 694, 133697.	8.0	36
24	Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations. Particle and Fibre Toxicology, 2019, 16, 30.	6.2	29
25	<p>Arsenic sulfide nanoformulation induces erythroid differentiation in chronic myeloid leukemia cells through degradation of BCR-ABL</p> . International Journal of Nanomedicine, 2019, Volume 14, 5581-5594.	6.7	14
26	Fabrication of core–shell α-MnO ₂ @polydopamine nanocomposites for the efficient and ultra-fast removal of U(<scp>vi</scp>) from aqueous solution. Dalton Transactions, 2019, 48, 971-981.	3.3	21
27	Mutual effects of U(VI) and Eu(III) immobilization on interpenetrating 3-dimensional MnO2/graphene oxide composites. Science of the Total Environment, 2019, 695, 133696.	8.0	48
28	Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(<scp>ii</scp>). Dalton Transactions, 2019, 48, 2100-2107.	3.3	69
29	Three-dimensional visualization of phase transition in polystyrene-block-polydimethylsiloxane thin film. Polymer, 2019, 167, 209-214.	3.8	8
30	<p>Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 4475-4489.	6.7	25
31	Inhibition of Murine Breast Cancer Metastases by Hydrophilic As4S4 Nanoparticles Is Associated With Decreased ROS and HIF-1α Downregulation. Frontiers in Oncology, 2019, 9, 333.	2.8	24
32	Enhanced Visible-Light-Induced Photoactivity of Type-II CeO ₂ /g-C ₃ N ₄ Nanosheet toward Organic Pollutants Degradation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9699-9708.	6.7	156
33	Exploring the interactions among factors impeding the diffusion of prefabricated building technologies. Engineering, Construction and Architectural Management, 2019, 26, 535-553.	3.1	48
34	Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal. Chemical Engineering Journal, 2019, 368, 941-950.	12.7	89
35	Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. Environmental Pollution, 2019, 250, 196-205.	7.5	48
36	Two-dimensional copper-based metalâ^'organic frameworks nano-sheets composites: One-step synthesis and highly efficient U(VI) immobilization. Journal of Hazardous Materials, 2019, 373, 580-590.	12.4	65

#	Article	IF	CITATIONS
37	Visible-light-driven activation of persulfate over cyano and hydroxyl group co-modified mesoporous g-C ₃ N ₄ for boosting bisphenol A degradation. Journal of Materials Chemistry A, 2019, 7, 5552-5560.	10.3	196
38	Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019, 248, 1-10.	20.2	291
39	Synthesis of PANI/AlOOH composite for Cr(VI) adsorption and reduction from aqueous solutions. ChemistrySelect, 2019, 4, 2352-2362.	1.5	19
40	Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). Journal of Colloid and Interface Science, 2019, 543, 225-236.	9.4	43
41	A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III). Chemical Engineering Journal, 2019, 355, 697-709.	12.7	109
42	Phenylboronic acid functionalized C3N4 facultative hydrophilic materials for enhanced enrichment of glycopeptides. Talanta, 2019, 191, 509-518.	5.5	38
43	Cationic polysaccharide spermine-pullulan drives tumor associated macrophage towards M1 phenotype to inhibit tumor progression. International Journal of Biological Macromolecules, 2019, 123, 1012-1019.	7.5	27
44	Graphene-encapsulated Cu/TiO2 nanotubes anode materials for lithium/sodium ion batteries. Materials Letters, 2019, 240, 267-270.	2.6	7
45	Immobilization of U(VI) on Hierarchical NiSiO@MgAl and NiSiO@NiAl Nanocomposites from Wastewater. ACS Sustainable Chemistry and Engineering, 2019, 7, 3475-3486.	6.7	23
46	Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chemical Engineering Journal, 2019, 359, 1550-1562.	12.7	88
47	Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: Experimental and computational studies. Chemical Engineering Journal, 2019, 359, 1563-1572.	12.7	45
48	Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol A over Co(II)-Modified TiO ₂ . Langmuir, 2019, 35, 276-283.	3.5	36
49	A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 2019, 335, 20-30.	4.4	262
50	Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catalysis Today, 2019, 335, 65-77.	4.4	351
51	The Enzyme-Like Property and Photocatalytic Effect on α, α-Diphenyl-β-Picrylhydrazyl (DPPH) of CuPt Nanocomposite. Catalysts, 2019, 9, 813.	3.5	2
52	Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Science China Chemistry, 2018, 61, 281-293.	8.2	68
53	Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance. Environmental Pollution, 2018, 238, 725-738.	7.5	71
54	Experimental and theoretical calculation investigation on efficient Pb(<scp>ii</scp>) adsorption on etched Ti ₃ AlC ₂ nanofibers and nanosheets. Environmental Science: Nano, 2018, 5, 946-955.	4.3	118

#	Article	IF	Citations
55	Coreâ€"shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing. RSC Advances, 2018, 8, 2950-2957.	3.6	67
56	Interaction of U(VI) with ternary layered double hydroxides by combined batch experiments and spectroscopy study. Chemical Engineering Journal, 2018, 338, 579-590.	12.7	62
57	Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: Batch, EXAFS and theoretical calculations. Chemical Engineering Journal, 2018, 346, 406-415.	12.7	64
58	Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chemical Engineering Journal, 2018, 336, 241-252.	12.7	179
59	In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficientÂremoval and recovery of U(VI). Journal of Cleaner Production, 2018, 172, 2033-2044.	9.3	88
60	Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. Journal of Hazardous Materials, 2018, 342, 150-157.	12.4	36
61	High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening. Advanced Healthcare Materials, 2018, 7, e1800990.	7.6	28
62	Comparative Investigation of Fe ₂ O ₃ and Fe _{1â€"<i>x</i>} S Nanostructures for Uranium Decontamination. ACS Applied Nano Materials, 2018, 1, 5543-5552.	5.0	15
63	Selective Immobilization of Highly Valent Radionuclides by Carboxyl Functionalized Mesoporous Silica Microspheres: Batch, XPS, and EXAFS Analyses. ACS Sustainable Chemistry and Engineering, 2018, 6, 15644-15652.	6.7	41
64	N, P, and S Codoped Grapheneâ€Like Carbon Nanosheets for Ultrafast Uranium (VI) Capture with High Capacity. Advanced Science, 2018, 5, 1800235.	11.2	84
65	Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing. AIP Advances, 2018, 8, .	1.3	7
66	Highly efficient Pb(<scp>ii</scp>) and Cu(<scp>ii</scp>) removal using hollow Fe ₃ O ₄ @PDA nanoparticles with excellent application capability and reusability. Inorganic Chemistry Frontiers, 2018, 5, 2174-2182.	6.0	61
67	Adsorption of Lead on Sulfur-Doped Graphitic Carbon Nitride Nanosheets: Experimental and Theoretical Calculation Study. ACS Sustainable Chemistry and Engineering, 2018, 6, 10606-10615.	6.7	73
68	Unexpected ultrafast and high adsorption of U(VI) and Eu(III) from solution using porous Al2O3 microspheres derived from MIL-53. Chemical Engineering Journal, 2018, 353, 157-166.	12.7	170
69	Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 2018, 240, 493-505.	7. 5	391
70	Combining batch technique with theoretical calculation studies to analyze the highly efficient enrichment of U(VI) and Eu(III) on magnetic MnFe2O4 nanocubes. Chemical Engineering Journal, 2018, 347-357.	12.7	82
71	Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix. Environmental Pollution, 2018, 243, 218-227.	7.5	94
72	Overcoming barriers to off-site construction through engaging stakeholders: A two-mode social network analysis. Journal of Cleaner Production, 2018, 201, 735-747.	9.3	124

#	Article	IF	Citations
73	Integration of a Superparamagnetic Scaffold and Magnetic Field To Enhance the Wound-Healing Phenotype of Fibroblasts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22913-22923.	8.0	31
74	Enrichment of U(VI) on Polyaniline Modified Mxene Composites Studied by Batch Experiment and Mechanism Investigation. Acta Chimica Sinica, 2018, 76, 701.	1.4	23
75	Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation. Scientific Reports, 2017, 7, 39625.	3.3	27
76	Carbon-Coated Fe ₃ O ₄ /VO _{<i>x</i>} Hollow Microboxes Derived from Metal–Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Derived Applied App	8.0	82
77	Superior sorption capacities of Ca-Ti and Ca-Al bimetallic oxides for U(VI) from aqueous solutions. Chemical Engineering Journal, 2017, 316, 419-428.	12.7	59
78	Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor. Nano Energy, 2017, 33, 88-97.	16.0	58
79	Bonding properties of humic acid with attapulgite and its influence on U(VI) sorption. Chemical Geology, 2017, 464, 91-100.	3.3	51
80	Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environmental Pollution, 2017, 226, 125-134.	7.5	129
81	Experimental and theoretical studies of ZnO and MgO for the rapid coagulation of graphene oxide from aqueous solutions. Separation and Purification Technology, 2017, 184, 88-96.	7.9	19
82	Performance-boosted triboelectric textile for harvesting human motion energy. Nano Energy, 2017, 39, 562-570.	16.0	97
83	How affordable housing becomes more sustainable? A stakeholder study. Journal of Cleaner Production, 2017, 162, 427-437.	9.3	94
84	Simultaneous removal of U(VI) and humic acid on defective TiO 2â^'x investigated by batch and spectroscopy techniques. Chemical Engineering Journal, 2017, 325, 576-587.	12.7	96
85	Magnetic Porous Carbonaceous Material Produced from Tea Waste for Efficient Removal of As(V), Cr(VI), Humic Acid, and Dyes. ACS Sustainable Chemistry and Engineering, 2017, 5, 4371-4380.	6.7	197
86	Rational design and synthesis of monodispersed hierarchical SiO 2 @layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chemical Engineering Journal, 2017, 323, 143-152.	12.7	91
87	Synthesis of magnetic Fe 3 O 4 /CFA composites for the efficient removal of U(VI) from wastewater. Chemical Engineering Journal, 2017, 320, 448-457.	12.7	108
88	Ternary NiCo ₂ P <i>>_×</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	21.0	544
89	Construction of Layered Double Hydroxides/Hollow Carbon Microsphere Composites and Its Applications for Mutual Removal of Pb(II) and Humic Acid from Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 11268-11279.	6.7	92
90	Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu(II) and Zn(II). Journal of Environmental Chemical Engineering, 2017, 5, 3656-3666.	6.7	38

#	Article	IF	CITATIONS
91	Experimental and theoretical study on selenate uptake to zirconium metal–organic frameworks: Effect of defects and ligands. Chemical Engineering Journal, 2017, 330, 1012-1021.	12.7	111
92	Sono-assisted preparation of Fe(II)-Al(III) layered double hydroxides and their application for removing uranium (VI). Chemical Engineering Journal, 2017, 328, 574-584.	12.7	68
93	Self-Assembly of Protein Nanoparticles from Rice Bran Waste and Their Use as Delivery System for Curcumin. ACS Sustainable Chemistry and Engineering, 2017, 5, 6605-6614.	6.7	31
94	The rapid coagulation of graphene oxide on La-doped layered double hydroxides. Chemical Engineering Journal, 2017, 309, 445-453.	12.7	41
95	Self-templated synthesis of novel carbon nanoarchitectures for efficient electrocatalysis. Scientific Reports, 2016, 6, 28049.	3.3	7
96	Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific Reports, 2016, 6, 20920.	3.3	52
97	Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Research, 2016, 9, 1663-1673.	10.4	38
98	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC < sub > 71 < /sub > BM in planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18776-18782.	10.3	26
99	Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods. Scientific Reports, 2016, 6, 24101.	3.3	1
100	A strategically designed porous magnetic N-doped Fe/Fe ₃ C@C matrix and its highly efficient uranium(<scp>vi</scp>) remediation. Inorganic Chemistry Frontiers, 2016, 3, 1227-1235.	6.0	63
101	Immobilization of As(V) in <i>Rhizopus oryzae</i> Investigated by Batch and XAFS Techniques. ACS Omega, 2016, 1, 899-906.	3.5	10
102	Highly Efficient Fenton and Enzyme-Mimetic Activities of Mixed-Phase VO _{<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 30126-30132.	8.0	61
103	Accumulation of Co(II) and Eu(III) by the mycelia of Aspergillus niger isolated from radionuclide-contaminated soils. Chemical Engineering Journal, 2016, 304, 186-193.	12.7	38
104	A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(<scp>vi</scp>) and humic acid removal. Polymer Chemistry, 2016, 7, 785-794.	3.9	146
105	Facile Preparation of Porous Mn ₂ SnO ₄ /Sn/C Composite Cubes as High Performance Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 3669-3676.	3.1	54
106	Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance. Physical Chemistry Chemical Physics, 2015, 17, 8187-8193.	2.8	25
107	Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 258-266.	4.7	87
108	Core–Shell Carbonâ€Coated CuO Nanocomposites: A Highly Stable Electrode Material for Supercapacitors and Lithiumâ€ion Batteries. Chemistry - an Asian Journal, 2015, 10, 595-601.	3.3	46

#	Article	IF	Citations
109	Plasmon Enhancement Effect in Au Gold Nanorods@Cu ₂ O Core–Shell Nanostructures and Their Use in Probing Defect States. Langmuir, 2015, 31, 1537-1546.	3.5	46
110	Plasmon enhanced visible light photocatalytic activity of ternary Ag ₂ Mo ₂ O ₇ @AgBrâ€"Ag rod-like heterostructures. Journal of Materials Chemistry A, 2015, 3, 14661-14668.	10.3	68
111	Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. Physical Chemistry Chemical Physics, 2015, 17, 24937-24943.	2.8	51
112	Efficient removal of a typical dye and $Cr(\langle scp \rangle vi\langle scp \rangle)$ reduction using N-doped magnetic porous carbon. RSC Advances, 2014, 4, 63110-63117.	3.6	52
113	Environmental implication of nitrogen isotopic composition in ornithogenic sediments from the Ross Sea region, East Antarctica: Î"15N as a new proxy for avian influence. Chemical Geology, 2014, 363, 91-100.	3.3	22
114	Synthesis of magnetic ion-imprinted composites and selective separation and preconcentration of U(<scp>vi</scp>). Dalton Transactions, 2014, 43, 7050-7056.	3.3	52
115	Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Research, 2014, 7, 1699-1705.	10.4	40
116	<scp> </scp> -Cysteine-induced chiroptical activity in assemblies of gold nanorods and its use in ultrasensitive detection of copper ions. RSC Advances, 2014, 4, 45159-45162.	3.6	11
117	Efficient adsorption/photodegradation of organic pollutants from aqueous systems using Cu ₂ O nanocrystals as a novel integrated photocatalytic adsorbent. Journal of Materials Chemistry A, 2014, 2, 14563.	10.3	96
118	Two-dimensional Cr ₂ O ₃ and interconnected graphene–Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	10.3	48
119	PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chemical Engineering Journal, 2014, 255, 604-612.	12.7	267
120	Highly efficient removal of humic acid from aqueous solutions by Mg/Al layered double hydroxides–Fe3O4 nanocomposites. RSC Advances, 2014, 4, 21802.	3.6	43
121	Efficient capture of strontium from aqueous solutions using graphene oxide–hydroxyapatite nanocomposites. Dalton Transactions, 2014, 43, 7464.	3.3	112
122	Impact of Al ₂ O ₃ on the Aggregation and Deposition of Graphene Oxide. Environmental Science & Environment	10.0	144
123	Copper Ion Assisted Reshaping and Etching of Gold Nanorods: Mechanism Studies and Applications. Journal of Physical Chemistry C, 2013, 117, 25769-25777.	3.1	54
124	Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Research, 2013, 47, 4159-4168.	11.3	150
125	Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities. RSC Advances, 2013, 3, 2754.	3.6	69
126	Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale, 2013, 5, 3315.	5.6	163

#	Article	IF	CITATION
127	Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano, 2013, 7, 3589-3597.	14.6	557
128	One-Pot Synthesis of Water-Swellable Mg–Al Layered Double Hydroxides and Graphene Oxide Nanocomposites for Efficient Removal of As(V) from Aqueous Solutions. ACS Applied Materials & lnterfaces, 2013, 5, 3304-3311.	8.0	310
129	Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 118-125.	4.7	160
130	Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Transactions, 2013, 42, 14710.	3.3	175
131	Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286.	3.6	226
132	Copper-Ion-Assisted Growth of Gold Nanorods in Seed-Mediated Growth: Significant Narrowing of Size Distribution via Tailoring Reactivity of Seeds. Langmuir, 2012, 28, 17517-17523.	3.5	29
133	Preconcentration of U(<scp>vi</scp>) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 2012, 41, 6182-6188.	3.3	353
134	Sorption of radiocobalt(II) onto Ca-montmorillonite: effect of contact time, solid content, pH, ionic strength and temperature. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 269-276.	1.5	17
135	Impact of environmental conditions on the sorption behavior of radiocobalt onto montmorillonite. Journal of Radioanalytical and Nuclear Chemistry, 2011, 290, 437-446.	1.5	20