

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1959178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolated Co Atoms Anchored on Defective Nitrogenâ€doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts. Energy and Environmental Materials, 2023, 6, .	12.8	16
2	Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Advanced Composites and Hybrid Materials, 2022, 5, 1439-1449.	21.1	23
3	Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Advanced Composites and Hybrid Materials, 2022, 5, 184-194.	21.1	34
4	Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. Journal of Colloid and Interface Science, 2022, 608, 652-661.	9.4	32
5	Noble metal nanoparticles supported on MOF nanorods and their catalytic applications. Journal of Porous Materials, 2022, 29, 97-102.	2.6	3
6	A metal-organic frameworks composite catalyst containing platinum and polyoxometalate for direct conversion of methane. Materials Letters, 2022, 307, 131078.	2.6	11
7	Cationic covalent organic framework via cycloaddition reactions as sulfur-loaded matrix for lithium-sulfur batteries. Materials Today Chemistry, 2022, 23, 100664.	3.5	16
8	Nitrogen-doped porous carbon microsphere with high surface area for supercapacitors and capacitive deionization. Journal of Porous Materials, 2022, 29, 415-422.	2.6	8
9	Tetrazole-functionalized two-dimensional covalent organic frameworks coordinated with metal ions for electrocatalytic oxygen evolution reaction. Materials Today Chemistry, 2022, 24, 100777.	3.5	8
10	Ruthenium Complex of sp ² Carbon onjugated Covalent Organic Frameworks as an Efficient Electrocatalyst for Hydrogen Evolution. Small, 2022, 18, e2107750.	10.0	24
11	Synthesis of 3D graphene/MnO2 nanocomposites with hierarchically porous structure for water purification. Journal of Porous Materials, 2022, 29, 983-990.	2.6	4
12	Fluorescent difluoroboron covalent organic frameworks via N, O-bidentate ligation. Materials Letters, 2022, 315, 131951.	2.6	4
13	Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chemical Engineering Journal, 2022, 437, 135314.	12.7	23
14	Oneâ€dimensional PtFe hollow nanochains for the efficient oxygen reduction reaction. , 2022, 4, 1003-1010.		27
15	2D COFs paper composites fabricated by the in situ growth for visual detection of target metal ions. Materials Chemistry and Physics, 2022, 286, 126208.	4.0	4
16	sp2 carbon-conjugated covalent organic frameworks for efficient photocatalytic degradation and visualized pH detection. Materials Today Chemistry, 2022, 25, 100962.	3.5	7
17	A novel fluorescent covalent organic framework for the selective detection of fluoride ion. Journal of Materials Science, 2022, 57, 13425-13432.	3.7	5
18	Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning. Chemical Engineering Journal, 2021, 404, 127095.	12.7	66

#	Article	IF	CITATIONS
19	Metal phenanthroline-based porous polymeric hybrid catalysts for direct conversion of methane. Journal of Porous Materials, 2021, 28, 487-493.	2.6	0
20	Fluorescent Test Paper via the In Situ Growth of COFs for Rapid and Convenient Detection of Pd(II) Ions. ACS Applied Materials & Interfaces, 2021, 13, 1644-1650.	8.0	78
21	Adenine-bearing covalent organic frameworks via one-pot tandem reaction for selective adsorption of Ag+. Microporous and Mesoporous Materials, 2021, 315, 110923.	4.4	27
22	Ultra-stable fluorescent 2D covalent organic framework for rapid adsorption and selective detection of radioiodine. Microporous and Mesoporous Materials, 2021, 319, 111046.	4.4	29
23	Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 591, 264-272.	9.4	57
24	Pyrimidineâ€Functionalized Covalent Organic Framework and its Cobalt Complex as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 4556-4562.	6.8	26
25	A novel fluorescent covalent organic framework containing boric acid groups for selective capture and sensing of <i>cis</i> -diol molecules. Nanoscale, 2020, 12, 23748-23755.	5.6	34
26	Direct growth of MnO2 on highly porous nitrogen-doped carbon nanowires for asymmetric supercapacitors. Diamond and Related Materials, 2020, 108, 107988.	3.9	19
27	A trifluoromethyl-grafted ultra-stable fluorescent covalent organic framework for adsorption and detection of pesticides. Journal of Materials Chemistry A, 2020, 8, 25156-25164.	10.3	68
28	Cu-MOF/Au–Pd composite catalyst: preparation and catalytic performance evaluation. Journal of Materials Science, 2020, 55, 10388-10398.	3.7	26
29	Porous organic polymers containing zinc porphyrin and phosphonium bromide as bifunctional catalysts for conversion of carbon dioxide. Journal of Materials Science, 2020, 55, 11856-11869.	3.7	23
30	Polycarbazole and biomass-derived flexible nitrogen-doped porous carbon materials for gas adsorption and sensing. Journal of Materials Chemistry A, 2020, 8, 6804-6811.	10.3	16
31	Fluorinated phenylpyridine iridium (III) complex based on metal–organic framework as highly efficient heterogeneous photocatalysts for cross-dehydrogenative coupling reactions. Journal of Materials Science, 2020, 55, 9364-9373.	3.7	14
32	Fullerene-bearing porous polymer via ball-milling approach and its palladium composite for catalytic deallylation. Microporous and Mesoporous Materials, 2020, 302, 110187.	4.4	9
33	Synthesis of water-soluble fluorescent polymeric glycoconjugate for the detection of cholera toxin. Designed Monomers and Polymers, 2019, 22, 150-158.	1.6	4
34	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie - International Edition, 2019, 58, 10671-10676.	13.8	27
35	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie, 2019, 131, 10781-10786.	2.0	4
36	Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis. Polymer, 2019, 169, 255-262.	3.8	58

#	Article	IF	CITATIONS
37	Remarkably Enhanced CO2 Uptake and Uranium Extraction by Functionalization of Cyano-bearing Conjugated Porous Polycarbazoles. Engineered Science, 2019, , .	2.3	7
38	Microporous Polycarbazole Materials: From Preparation and Properties to Applications. Macromolecular Rapid Communications, 2018, 39, e1800040.	3.9	54
39	Hypercrosslinked porous polycarbazoles from carbazolyl-bearing aldehydes or ketones. Polymer, 2018, 143, 87-95.	3.8	21
40	Cationic Polycarbazole Networks as Visible-Light Heterogeneous Photocatalysts for Oxidative Organic Transformations. ACS Catalysis, 2018, 8, 5313-5322.	11.2	113
41	Micro/mesoporous conjugated fluorinated iron-porphyrin polymer: porosity and heterogeneous catalyst for oxidation. Advanced Composites and Hybrid Materials, 2018, 1, 696-704.	21.1	9
42	Boronic acid-functionalized porous polycarbazoles: preparation, adsorption performance, and heterogeneous catalysts for selective oxidation. Journal of Materials Science, 2018, 53, 15025-15033.	3.7	8
43	Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction. Engineered Science, 2018, , .	2.3	5
44	Fluorinated Porous Conjugated Polyporphyrins through Direct Câ^'H Arylation Polycondensation: Preparation, Porosity, and Use as Heterogeneous Catalysts for Baeyer–Villiger Oxidation. Chemistry - A European Journal, 2017, 23, 9831-9837.	3.3	30
45	Sugar-based micro/mesoporous hypercross-linked polymers with in situ embedded silver nanoparticles for catalytic reduction. Beilstein Journal of Organic Chemistry, 2017, 13, 1212-1221.	2.2	7
46	Gold nanoparticles encapsulated in hierarchical porous polycarbazole: preparation and application in catalytic reduction. RSC Advances, 2016, 6, 48543-48549.	3.6	18
47	Sugar-functionalized triptycenes used for dispersion of single-walled carbon nanotubes in aqueous solution by supramolecular interaction. New Journal of Chemistry, 2016, 40, 3300-3307.	2.8	9
48	Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(<scp>iii</scp>) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis. Polymer Chemistry, 2016, 7, 2299-2307.	3.9	62
49	Facile synthesis of hierarchical triazine-based porous carbons for hydrogen storage. Microporous and Mesoporous Materials, 2016, 224, 129-134.	4.4	15
50	Sugar-functionalized water-soluble pillar[5]arene and its host–guest interaction with fullerene. RSC Advances, 2015, 5, 19041-19047.	3.6	21
51	Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel–Crafts alkylation. Polymer Chemistry, 2015, 6, 2478-2487.	3.9	96
52	Triazatriangulenium-based porous organic polymers for carbon dioxide capture. RSC Advances, 2015, 5, 90135-90143.	3.6	33
53	Recent Advance in Organic Porous Polycarbazoles: Preparation and Properties. Acta Chimica Sinica, 2015, 73, 541.	1.4	19
54	Triptycene-Based Microporous Poly(diaminophosphazene). Acta Chimica Sinica, 2015, 73, 617.	1.4	0

#	Article	IF	CITATIONS
55	Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities. Journal of Materials Chemistry A, 2014, 2, 14201.	10.3	54
56	Adsorption performance and catalytic activity of porous conjugated polyporphyrins <i>via</i> carbazole-based oxidative coupling polymerization. Polymer Chemistry, 2014, 5, 3081-3088.	3.9	77
57	Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning. Macromolecules, 2014, 47, 5926-5931.	4.8	110
58	Preparation and adsorption performance of cross-linked porous polycarbazoles. Journal of Materials Chemistry A, 2014, 2, 16181-16189.	10.3	132
59	Nitrogenâ€Containing Microporous Conjugated Polymers via Carbazoleâ€Based Oxidative Coupling Polymerization: Preparation, Porosity, and Gas Uptake. Small, 2014, 10, 308-315.	10.0	145
60	Preparation and gas uptake of microporous organic polymers based on binaphthalene-containing spirocyclic tetraether. Polymer, 2013, 54, 2952-2957.	3.8	15
61	Carbohydrate-Functionalized AIE-Active Molecules as Luminescent Probes for Biosensing. , 2013, , 189-207.		0
62	Cationic cyclotriveratrylene-based glycoconjugate and its interaction with fullerene. RSC Advances, 2013, 3, 6985.	3.6	8
63	Fluorinated Porous Organic Polymers via Direct C–H Arylation Polycondensation. ACS Macro Letters, 2013, 2, 522-526.	4.8	85
64	Sugar-Functionalized Water-Soluble Cyclotriveratrylene Derivatives: Preparation and Interaction with Fullerene. Journal of Organic Chemistry, 2012, 77, 971-976.	3.2	27
65	Supramolecular Self-Assembly Induced Graphene Oxide Based Hydrogels and Organogels. Langmuir, 2012, 28, 3005-3010.	3.5	87
66	Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation. Journal of the American Chemical Society, 2012, 134, 6084-6087.	13.7	660
67	Porous Polybenzimidazoles via Templateâ€Free Suzuki Coupling Polymerization: Preparation, Porosity, and Heterogeneous Catalytic Activity in Knoevenagel Condensation Reactions. Macromolecular Chemistry and Physics, 2012, 213, 1575-1581.	2.2	31
68	Microporous polymeric microsphere via surfactant-free Suzuki coupling polymerization in a single-phase: Porosity and gas uptake. Polymer, 2012, 53, 2032-2037.	3.8	17
69	Imidazole-bearing tetraphenylethylene: fluorescent probe for metal ions based on AIE feature. New Journal of Chemistry, 2011, 35, 1667.	2.8	38
70	Thionyl Chloride-Catalyzed Preparation of Microporous Organic Polymers through Aldol Condensation. Macromolecules, 2011, 44, 6382-6388.	4.8	50
71	One-step preparation of fluorescent inorganic–organic hybrid material used for explosive sensing. Polymer Chemistry, 2011, 2, 1124-1128	3.9	67
72	Spiro(fluorene-9,9′-xanthene)-Based Porous Organic Polymers: Preparation, Porosity, and Exceptional Hydrogen Uptake at Low Pressure. Macromolecules, 2011, 44, 7987-7993.	4.8	76

#	Article	IF	CITATIONS
73	Tetraphenylethylene-based fluorescent porous organic polymers: preparation, gas sorption properties and photoluminescence properties. Journal of Materials Chemistry, 2011, 21, 13554.	6.7	150
74	Porous Organic Polymers Based on Propeller-Like Hexaphenylbenzene Building Units. Macromolecules, 2011, 44, 5573-5577.	4.8	113
75	Sugar-bearing tetraphenylethylene: novel fluorescent probe for studies of carbohydrate–protein interaction based on aggregation-induced emission. Organic and Biomolecular Chemistry, 2011, 9, 2219.	2.8	74
76	Tetraphenylethyleneâ€based Glycoconjugate as a Fluorescence "Turnâ€On―Sensor for Cholera Toxin. Chemistry - an Asian Journal, 2011, 6, 2376-2381.	3.3	59
77	Water-soluble conjugated polyelectrolyte with pendant glycocluster: Synthesis and its interaction with heparin. Polymer, 2011, 52, 383-390.	3.8	31
78	Triphenylamineâ€based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ions. Journal of Polymer Science Part A, 2010, 48, 1310-1316.	2.3	29
79	Fluorescent Conjugated Polyfluorene with Pendant Lactopyranosyl Ligands for Studies of Ca ²⁺ -Mediated Carbohydrateâ^Carbohydrate Interaction. Biomacromolecules, 2010, 11, 13-19.	5.4	38
80	Glucosamine hydrochloride functionalized tetraphenylethylene: A novel fluorescent probe for alkaline phosphatase based on the aggregation-induced emission. Chemical Communications, 2010, 46, 4067.	4.1	155
81	Glucosamine Hydrochloride Functionalized Waterâ€Soluble Conjugated Polyfluorene: Synthesis, Characterization, and Interactions with DNA. Macromolecular Rapid Communications, 2009, 30, 1651-1655.	3.9	26
82	Prepolymerization and postpolymerization functionalization approaches to fluorescent conjugated carbazoleâ€based glycopolymers via "click chemistry― Journal of Polymer Science Part A, 2009, 47, 2948-2957.	2.3	25
83	Triphenylamine-based fluorescent conjugated glycopolymers: Synthesis, characterization and interactions with lectins. Polymer, 2009, 50, 2830-2835.	3.8	19
84	Synthesis of a fluorescence-labeled K30 antigen repeating unit using click chemistry. Carbohydrate Research, 2007, 342, 975-981.	2.3	12
85	Synthesis of sporiolide B from d-glucal. Carbohydrate Research, 2007, 342, 1405-1411.	2.3	17
86	Facile synthesis of cleistetroside-2, a partially acetylated oligorhamnoside from Cleistopholis glauca and patens. Carbohydrate Research, 2007, 342, 1496-1501.	2.3	13
87	The First Total Synthesis of Sporiolide A. Journal of Organic Chemistry, 2006, 71, 8446-8451.	3.2	30
88	The first total synthesis of sporiolide B. Tetrahedron Letters, 2006, 47, 8489-8492.	1.4	20
89	Synthesis of a C3-symmetric (1→6)-N-acetyl-β-d-glucosamine octadecasaccharide using click chemistry. Carbohydrate Research, 2005, 340, 2476-2482.	2.3	46
90	Synthesis of Novel Phosphoramide-Tegafur Derivatives Containing Aminopropylsilatrane. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1621-1627.	1.6	16

#	Article	IF	CITATIONS
91	Palladium complex composites based on fullerene encapsulated in porous zinc porphyrin polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 0, , 1-8.	2.2	2