Mahiar Max Hamedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1958668/publications.pdf

Version: 2024-02-01

47 papers 3,656 citations

257101 24 h-index 214527 47 g-index

47 all docs

47 docs citations

47 times ranked

5665 citing authors

#	Article	IF	Citations
1	Highâ€Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene. Advanced Functional Materials, 2022, 32, 2109970.	7.8	33
2	Hierarchical soot nanoparticle self-assemblies for enhanced performance as sodium-ion battery anodes. Journal of Materials Chemistry A, 2022, 10, 9059-9066.	5 . 2	8
3	Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal, 2021, 420, 127601.	6.6	32
4	Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer. Journal of Materials Chemistry C, 2021, 9, 14596-14605.	2.7	1
5	Nitrocellulose-bound achromopeptidase for point-of-care nucleic acid tests. Scientific Reports, 2021, 11, 6140.	1.6	8
6	Woven Electroanalytical Biosensor for Nucleic Acid Amplification Tests. Advanced Healthcare Materials, 2021, 10, e2100034.	3.9	16
7	Thread-based wearable devices. MRS Bulletin, 2021, 46, 502-511.	1.7	16
8	Layerâ€byâ€Layer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond. Small, 2021, 17, e2100954.	5.2	15
9	Polyelectrolyte-Assisted Dispersions of Reduced Graphite Oxide Nanoplates in Water and Their Gas-Barrier Application. ACS Applied Materials & Interfaces, 2021, 13, 43301-43313.	4.0	7
10	A disposable, wearable, flexible, stitched textile electrochemical biosensing platform. Biosensors and Bioelectronics, 2021, 194, 113604.	5.3	24
11	Layerâ€byâ€Layer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€lon Batteries. Small, 2021, 17, e2006434.	5.2	12
12	Electroanalytical Paper-Based Nucleic Acid Amplification Biosensors with Integrated Thread Electrodes. Analytical Chemistry, 2021, 93, 14187-14195.	3.2	22
13	Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56403-56412.	4.0	39
14	Weaving Offâ€Theâ€Shelf Yarns into Textile Micro Total Analysis Systems (Î⅓TAS). Macromolecular Bioscience, 2020, 20, e2000150.	2.1	10
15	Electrochemical Detection of Genomic DNA Utilizing Recombinase Polymerase Amplification and Stem-Loop Probe. ACS Omega, 2020, 5, 12103-12109.	1.6	17
16	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
17	Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule. Langmuir, 2019, 35, 10367-10373.	1.6	5
18	Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nature Communications, 2019, 10, 2558.	5.8	166

#	Article	IF	Citations
19	lon-induced assemblies of highly anisotropic nanoparticles are governed by ion–ion correlation and specific ion effects. Nanoscale, 2019, 11, 3514-3520.	2.8	47
20	From Single Molecules to Thin Film Electronics, Nanofibers, eâ€Textiles and Power Cables: Bridging Length Scales with Organic Semiconductors. Advanced Materials, 2019, 31, e1807286.	11.1	20
21	Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns. Advanced Electronic Materials, 2019, 5, 1800924.	2.6	19
22	Copperâ€Plated Paper for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2018, 14, e1803313.	5.2	18
23	Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Materials Science and Engineering Reports, 2018, 126, 1-29.	14.8	172
24	Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Letters, 2017, 17, 1439-1447.	4.5	219
25	Electrical Textile Valves for Paper Microfluidics. Advanced Materials, 2017, 29, 1702894.	11.1	60
26	Electrochemical circuits from â€~cut and stick' PEDOT:PSS-nanocellulose composite. Flexible and Printed Electronics, 2017, 2, 045010.	1.5	18
27	Paper Actuators: Electrically Activated Paper Actuators (Adv. Funct. Mater. 15/2016). Advanced Functional Materials, 2016, 26, 2398-2398.	7.8	2
28	Thermoelectric Polymers and their Elastic Aerogels. Advanced Materials, 2016, 28, 4556-4562.	11.1	157
29	Electrically Activated Paper Actuators. Advanced Functional Materials, 2016, 26, 2446-2453.	7.8	135
30	Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. Lab on A Chip, 2016, 16, 3885-3897.	3.1	24
31	Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography. Nano Letters, 2016, 16, 4125-4132.	4.5	30
32	Integrating Electronics and Microfluidics on Paper. Advanced Materials, 2016, 28, 5054-5063.	11.1	216
33	Electroanalytical devices with pins and thread. Lab on A Chip, 2016, 16, 112-119.	3.1	52
34	Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nature Communications, 2015, 6, 7259.	5.8	246
35	Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 2467-2476.	7.3	325
36	Paper-Based Potentiometric Ion Sensing. Analytical Chemistry, 2014, 86, 9548-9553.	3.2	140

3

#	Article	IF	CITATIONS
37	Electronic Polymers and DNA Selfâ€Assembled in Nanowire Transistors. Small, 2013, 9, 363-368.	5.2	34
38	Functionalisation of recombinant spider silk with conjugated polyelectrolytes. Journal of Materials Chemistry, 2011, 21, 2909.	6.7	20
39	Woven Electrochemical Transistors on Silk Fibers. Advanced Materials, 2011, 23, 898-901.	11.1	149
40	Supramolecular Assembly of Designed αâ€Helical Polypeptideâ€Based Nanostructures and Luminescent Conjugated Polyelectrolytes. Macromolecular Bioscience, 2010, 10, 836-841.	2.1	18
41	Biomolecular nanowires decorated by organic electronic polymers. Journal of Materials Chemistry, 2010, 20, 2269-2276.	6.7	19
42	Polypeptide-guided assembly of conducting polymer nanocomposites. Nanoscale, 2010, 2, 2058.	2.8	21
43	Fiberâ€Embedded Electrolyteâ€Gated Fieldâ€Effect Transistors for eâ€Textiles. Advanced Materials, 2009, 21, 573-577.	11.1	157
44	Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity. Chemistry of Materials, 2009, 21, 1815-1821.	3.2	96
45	Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography. Advanced Functional Materials, 2008, 18, 2563-2571.	7.8	24
46	Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT. Nano Letters, 2008, 8, 1736-1740.	4.5	115
47	Towards woven logic from organic electronic fibres. Nature Materials, 2007, 6, 357-362.	13.3	419