List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1958602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A self-assembled subphthalocyanine-based nanophotosensitiser for photodynamic therapy. Chemical Communications, 2022, 58, 669-672.	2.2	6
2	Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2022, 14, 14903-14915.	4.0	7
3	Porphyrin-based supramolecular nanofibres as a dynamic and activatable photosensitiser for photodynamic therapy. Biomaterials Science, 2022, 10, 3259-3267.	2.6	7
4	Comparison of the In Vitro Photodynamic Activity of the C1α and C1β Anomers of a Glucosylated Boron Dipyrromethene. Colorants, 2022, 1, 193-207.	0.9	4
5	[3 + 1] Mixed Cyclization: A Synthetic Route to Prepare Low-Symmetry Phthalocyanines. Journal of Organic Chemistry, 2022, 87, 7213-7218.	1.7	0
6	Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy. Journal of the American Chemical Society, 2022, 144, 10647-10658.	6.6	31
7	Oneâ€Pot Synthesis of a Cyclic Antimicrobial Peptide onjugated Phthalocyanine for Synergistic Chemoâ€Photodynamic Killing of Multidrugâ€Resistant Bacteria. Advanced Therapeutics, 2021, 4, 2000204.	1.6	13
8	Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunology, Immunotherapy, 2021, 70, 485-495.	2.0	10
9	Reactive oxygen species-responsive polydopamine nanoparticles for targeted and synergistic chemo and photodynamic anticancer therapy. Nanoscale, 2021, 13, 15899-15915.	2.8	15
10	β-Cyclodextrin-conjugated phthalocyanines as water-soluble and recyclable sensitisers for photocatalytic applications. Chemical Communications, 2021, 57, 3567-3570.	2.2	9
11	Facile Synthesis of Cyclic Peptide–Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. Journal of Medicinal Chemistry, 2021, 64, 2064-2076.	2.9	21
12	Enhancement of innate and adaptive anti-tumor immunity by serum obtained from vascular photodynamic therapy-cured BALB/c mouse. Cancer Immunology, Immunotherapy, 2021, 70, 3217-3233.	2.0	10
13	C=C Bond Oxidative Cleavage of BODIPY Photocages by Visible Light. Chemistry - A European Journal, 2021, 27, 11268-11272.	1.7	12
14	Phenanthroline-Fused Phthalocyanine Analogues Having a Monovalent Corrole Inner Perimeter and 4nπ Nonaromatic Properties. Organic Letters, 2021, 23, 5942-5946.	2.4	1
15	Tuning the Electrochemical Properties of Polymeric Cobalt Phthalocyanines for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2103290.	7.8	38
16	Nanoparticles for Triple Drug Release for Combined Chemo―and Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 14610-14618.	1.7	5
17	Detection of cell-surface sialic acids and photodynamic eradication of cancer cells using dye-modified polydopamine-coated gold nanobipyramids. Journal of Materials Chemistry B, 2021, 9, 5780-5784.	2.9	10
18	Immobilising hairpin DNA-conjugated distyryl boron dipyrromethene on gold@polydopamine core–shell nanorods for microRNA detection and microRNA-mediated photodynamic therapy. Nanoscale, 2021, 13, 6499-6512.	2.8	16

#	Article	IF	CITATIONS
19	One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomaterials Science, 2021, 9, 7832-7837.	2.6	8
20	Targeted Delivery and Site-Specific Activation of β-Cyclodextrin-Conjugated Photosensitizers for Photodynamic Therapy through a Supramolecular Bio-orthogonal Approach. Journal of Medicinal Chemistry, 2021, 64, 15461-15476.	2.9	12
21	Dual Cathepsin B and Glutathione-Activated Dimeric and Trimeric Phthalocyanine-Based Photodynamic Molecular Beacons for Targeted Photodynamic Therapy. Journal of Medicinal Chemistry, 2021, 64, 17455-17467.	2.9	12
22	Glutathione-degradable polydopamine nanoparticles as a versatile platform for fabrication of advanced photosensitisers for anticancer therapy. Biomaterials Science, 2021, 10, 189-201.	2.6	10
23	The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chemical Society Reviews, 2020, 49, 1041-1056.	18.7	486
24	A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy. Chemical Communications, 2020, 56, 1078-1081.	2.2	23
25	Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy. Journal of Medicinal Chemistry, 2020, 63, 8512-8523.	2.9	31
26	Phthalaldehyde-Amine Capture Reactions for Bioconjugation and Immobilization of Phthalocyanines. Organic Letters, 2020, 22, 7098-7102.	2.4	10
27	Photodynamic inactivation of Leishmania braziliensis doubly sensitized with uroporphyrin and diamino-phthalocyanine activates effector functions of macrophages in vitro. Scientific Reports, 2020, 10, 17065.	1.6	11
28	Ferric Ion Driven Assembly of Catalaseâ€like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angewandte Chemie - International Edition, 2020, 59, 23228-23238.	7.2	79
29	Ferric Ion Driven Assembly of Catalaseâ€like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angewandte Chemie, 2020, 132, 23428-23438.	1.6	10
30	Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Molecular Pharmaceutics, 2020, 17, 3941-3951.	2.3	16
31	Facile one-pot synthesis of cyclic peptide-conjugated photosensitisers for targeted photodynamic therapy. Chemical Communications, 2020, 56, 11941-11944.	2.2	11
32	Constructing a four-input molecular keypad lock with a multi-stimuli-responsive phthalocyanine. Chemical Communications, 2020, 56, 14601-14604.	2.2	4
33	Synthesis and In Vitro Photodynamic Activity of Cationic Boron Dipyrromethene-Based Photosensitizers Against Methicillin-Resistant Staphylococcus aureus. Biomedicines, 2020, 8, 140.	1.4	8
34	Monosubstituted tricationic Zn(II) phthalocyanine enhances antimicrobial photodynamic inactivation (aPDI) of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and cytotoxicity evaluation for topical applications: <i>in vitro</i> and <i>in vivo</i> study. Emerging Microbes and Infections, 2020, 9. 1628-1637.	3.0	13
35	Self-Assembled Nanophotosensitizing Systems with Zinc(II) Phthalocyanine-Peptide Conjugates as Building Blocks for Targeted Chemo-Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 5463-5473.	2.3	20
36	Glutathione- and light-controlled generation of singlet oxygen for triggering drug release in mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4460-4468.	2.9	9

#	Article	IF	CITATIONS
37	A Novel Dicationic Boron Dipyrromethene-based Photosensitizer for Antimicrobial Photodynamic Therapy against Methicillin-Resistant Staphylococcus aureus. Current Medicinal Chemistry, 2020, 28, 4283-4294.	1.2	2
38	Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Advances, 2019, 9, 20652-20662.	1.7	20
39	A Phthalocyanineâ€Based Glutathioneâ€Activated Photosensitizer with a Ferrocenyl Boron Dipyrromethene Dark Quencher for Photodynamic Therapy. ChemPhotoChem, 2019, 3, 970-970.	1.5	1
40	Boron(III) Carbazosubphthalocyanines: Coreâ€Expanded Antiaromatic Boron(III) Subphthalocyanine Analogues. Angewandte Chemie, 2019, 131, 2294-2299.	1.6	1
41	Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broad-spectrum photodynamic insecticides. PLoS ONE, 2019, 14, e0217355.	1.1	16
42	A Phthalocyanineâ€Based Glutathioneâ€Activated Photosensitizer with a Ferrocenyl Boron Dipyrromethene Dark Quencher for Photodynamic Therapy. ChemPhotoChem, 2019, 3, 1004-1013.	1.5	11
43	Antitumor immunity induced by the photodynamic action of BAM-SiPc, a silicon (IV) phthalocyanine photosensitizer. Cellular and Molecular Immunology, 2019, 16, 676-678.	4.8	6
44	An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy. European Journal of Medicinal Chemistry, 2019, 174, 56-65.	2.6	24
45	Selective Detection of Hg ²⁺ lons with Boron Dipyrrometheneâ€Based Fluorescent Probes Appended with a Bis(1,2,3â€ŧriazole)amino Receptor. Chemistry - an Asian Journal, 2019, 14, 1059-1065.	1.7	12
46	A novel distyryl boron dipyrromethene with two functional tags for site-specific bioorthogonal photosensitisation towards targeted photodynamic therapy. Chemical Communications, 2019, 55, 13518-13521.	2.2	16
47	Boron(III) Carbazosubphthalocyanines: Coreâ€Expanded Antiaromatic Boron(III) Subphthalocyanine Analogues. Angewandte Chemie - International Edition, 2019, 58, 2272-2277.	7.2	10
48	Development of anti-cadherin-17 antibody -IR700 conjugate for photodynamic therapy against gastrointestinal cancers. , 2019, , .		1
49	Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2018, 61, 3952-3961.	2.9	58
50	Frontispiece: Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy. Chemistry - A European Journal, 2018, 24, .	1.7	0
51	Functional aza-boron dipyrromethenes for subcellular imaging and organelle-specific photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 3285-3296.	2.9	29
52	Assemblies of Boron Dipyrromethene/Porphyrin, Phthalocyanine, and C ₆₀ Moieties as Artificial Models of Photosynthesis: Synthesis, Supramolecular Interactions, and Photophysical Studies. Chemistry - A European Journal, 2018, 24, 3862-3872.	1.7	16
53	Disulfideâ€Linked Dendritic Oligomeric Phthalocyanines as Glutathioneâ€Responsive Photosensitizers for Photodynamic Therapy. Chemistry - A European Journal, 2018, 24, 5779-5789.	1.7	21
54	Photodynamic Vaccination of BALB/c Mice for Prophylaxis of Cutaneous Leishmaniasis Caused by Leishmania amazonensis. Frontiers in Microbiology, 2018, 9, 165.	1.5	9

#	Article	IF	CITATIONS
55	Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. Journal of Materials Chemistry B, 2018, 6, 5570-5581.	2.9	18
56	Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides. , 2018, , .		3
57	Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cellular and Molecular Immunology, 2017, 14, 223-234.	4.8	21
58	Ethynylâ€Linked Donorâ€ï€â€Acceptor Boron Dipyrromethenes for Panchromatic Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2017, 6, 758-767.	1.3	13
59	A cell-selective glutathione-responsive tris(phthalocyanine) as a smart photosensitiser for targeted photodynamic therapy. Dalton Transactions, 2017, 46, 11223-11229.	1.6	17
60	Encapsulating pHâ€Responsive Doxorubicin–Phthalocyanine Conjugates in Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Controlled Chemotherapy. Chemistry - A European Journal, 2017, 23, 16505-16515.	1.7	43
61	Push–Pull Distyryl Boron Dipyrromethenes as Nearâ€Infrared Sensitizers for Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2017, 6, 1476-1485.	1.3	9
62	pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 23487-23496.	4.0	29
63	An artificial photosynthetic model based on a molecular triad of boron dipyrromethene and phthalocyanine. Physical Chemistry Chemical Physics, 2016, 18, 10964-10975.	1.3	4
64	Molecular Phthalocyanine-Based Photosensitizers for Photodynamic Therapy. , 2016, , 237-272.		3
65	A biotin-conjugated glutathione-responsive FRET-based fluorescent probe with a ferrocenyl BODIPY as the dark quencher. Dalton Transactions, 2016, 45, 17798-17806.	1.6	21
66	pH―and Thiolâ€Responsive BODIPYâ€Based Photosensitizers for Targeted Photodynamic Therapy. Chemistry - A European Journal, 2016, 22, 8273-8281.	1.7	52
67	Synthesis of an ABCD-Type Phthalocyanine by Intramolecular Cyclization Reaction. Organic Letters, 2016, 18, 3234-3237.	2.4	8
68	An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy. Dalton Transactions, 2016, 45, 13021-13024.	1.6	18
69	Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica. Antimicrobial Agents and Chemotherapy, 2016, 60, 2003-2011.	1.4	18
70	Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. European Journal of Medicinal Chemistry, 2014, 84, 278-283.	2.6	69
71	Phthalocyanine-based photosensitizers: more efficient photodynamic therapy?. Future Medicinal Chemistry, 2014, 6, 1991-1993.	1.1	16
72	Sequential Logic Operations with a Molecular Keypad Lock with Four Inputs and Dual Fluorescence Outputs. Angewandte Chemie - International Edition, 2014, 53, 10481-10484.	7.2	86

#	Article	IF	CITATIONS
73	A Glutathioneâ€Activated Phthalocyanineâ€Based Photosensitizer for Photodynamic Therapy. Chemistry - A European Journal, 2014, 20, 6201-6201.	1.7	1
74	Synthesis and In Vitro Photodynamic Activities of an Integrinâ€Targeting cRGDâ€Conjugated Zinc(II) Phthalocyanine. Chemistry - an Asian Journal, 2014, 9, 554-561.	1.7	26
75	A Dual Activatable Photosensitizer toward Targeted Photodynamic Therapy. Journal of Medicinal Chemistry, 2014, 57, 4088-4097.	2.9	112
76	Oligolysineâ€Conjugated Zinc(II) Phthalocyanines as Efficient Photosensitizers for Antimicrobial Photodynamic Therapy. Chemistry - an Asian Journal, 2014, 9, 1868-1875.	1.7	24
77	A Glutathioneâ€Activated Phthalocyanineâ€Based Photosensitizer for Photodynamic Therapy. Chemistry - A European Journal, 2014, 20, 6241-6245.	1.7	70
78	A boron dipyrromethene–phthalocyanine pentad as an artificial photosynthetic model. Chemical Communications, 2013, 49, 2998.	2.2	41
79	Preparation and in Vitro Photodynamic Activities of Folate-Conjugated Distyryl Boron Dipyrromethene Based Photosensitizers. Journal of Medicinal Chemistry, 2013, 56, 8475-8483.	2.9	82
80	Preparation and photophysical properties of a tetraethylene glycol-linked phthalocyanine–porphyrin dyad and triad. New Journal of Chemistry, 2013, 37, 1746.	1.4	1
81	Monoâ€PEGylated Zinc(II) Phthalocyanines: Preparation, Nanoparticle Formation, and In Vitro Photodynamic Activity. Chemistry - an Asian Journal, 2013, 8, 55-59.	1.7	24
82	A disulfide-linked conjugate of ferrocenyl chalcone and silicon(<scp>iv</scp>) phthalocyanine as an activatable photosensitiser. Chemical Communications, 2013, 49, 4274-4276.	2.2	124
83	Photoinduced energy and charge transfer in a p-phenylene-linked dyad of boron dipyrromethene and monostyryl boron dipyrromethene. Physical Chemistry Chemical Physics, 2013, 15, 6912.	1.3	4
84	Differential Detection of Zn ²⁺ and Cd ²⁺ lons by BODIPYâ€Based Fluorescent Sensors. Chemistry - an Asian Journal, 2013, 8, 1441-1446.	1.7	31
85	Formation and photoinduced processes of the host–guest complexes of a β-cyclodextrin-conjugated aza-BODIPY and tetrasulfonated porphyrins. Chemical Communications, 2013, 49, 5277.	2.2	45
86	Photosynthetic Antennaâ€Reaction Center Mimicry with a Covalently Linked Monostyryl Boronâ€Dipyrromethene–Azaâ€Boronâ€Dipyrromethene–C ₆₀ Triad. Chemistry - A European Journal, 2013, 19, 11332-11341.	1.7	94
87	Constructing Sandwich-Type Rare Earth Double-Decker Complexes with N-Confused Porphyrinato and Phthalocyaninato Ligands. Inorganic Chemistry, 2012, 51, 9265-9272.	1.9	28
88	A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg ²⁺ ions. Dalton Transactions, 2012, 41, 1801-1807.	1.6	23
89	A pH-responsive fluorescent probe and photosensitiser based on a self-quenched phthalocyanine dimer. Chemical Communications, 2012, 48, 9065.	2.2	59
90	A Zinc(II) Phthalocyanine Conjugated with an Oxaliplatin Derivative for Dual Chemo- and Photodynamic Therapy. Journal of Medicinal Chemistry, 2012, 55, 5446-5454.	2.9	99

#	Article	IF	CITATIONS
91	Formation and photoinduced processes of a self-assembled subphthalocyanine–porphyrin–phthalocyanine supramolecular complex. Chemical Communications, 2012, 48, 4597.	2.2	21
92	Sequential energy and charge transfer processes in mixed host–guest complexes of subphthalocyanine, porphyrin and phthalocyanine chromophores. Physical Chemistry Chemical Physics, 2012, 14, 14573.	1.3	19
93	A Phthalocyanine–Peptide Conjugate with High In Vitro Photodynamic Activity and Enhanced In Vivo Tumorâ€Retention Property. Chemistry - A European Journal, 2012, 18, 4225-4233.	1.7	61
94	Photoinduced Electron Transfer in a Ferrocene–Distyryl BODIPY Dyad and a Ferrocene–Distyryl BODIPY–C ₆₀ Triad. ChemPhysChem, 2012, 13, 2030-2036.	1.0	30
95	A Highly Selective Colorimetric and Fluorescent Probe for Cu ²⁺ and Hg ²⁺ Ions Based on a Distyryl BODIPY with Two Bis(1,2,3â€triazole)amino Receptors. Chemistry - an Asian Journal, 2012, 7, 196-200.	1.7	60
96	Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chemical Communications, 2011, 47, 4748.	2.2	91
97	Synthesis and in Vitro Photodynamic Activities of Pegylated Distyryl Boron Dipyrromethene Derivatives. Journal of Medicinal Chemistry, 2011, 54, 3097-3102.	2.9	61
98	Phthalocyanineâ^'Polyamine Conjugates as Highly Efficient Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2011, 54, 320-330.	2.9	114
99	Unsymmetrical β-cyclodextrin-conjugated silicon(iv) phthalocyanines as highly potent photosensitisers for photodynamic therapy. Chemical Communications, 2011, 47, 9657.	2.2	61
100	Switching the photoinduced processes in host–guest complexes of β-cyclodextrin-substituted silicon(iv) phthalocyanines and a tetrasulfonated porphyrin. Physical Chemistry Chemical Physics, 2011, 13, 17633.	1.3	17
101	Facile synthesis of pegylated zinc(ii) phthalocyanines via transesterification and their in vitro photodynamic activities. Organic and Biomolecular Chemistry, 2011, 9, 7028.	1.5	42
102	Photoinduced Electron Transfer in a Distyryl BODIPY–Fullerene Dyad. Chemistry - an Asian Journal, 2011, 6, 174-179.	1.7	79
103	A ratiometric near-infrared pH-responsive fluorescent dye based on distyryl BODIPY. Organic and Biomolecular Chemistry, 2011, 9, 2610.	1.5	30
104	Mimicking Photosynthetic Antennaâ€Reaction enter Complexes with a (Boron) Tj ETQq0 0 0 rgBT /Overlock 2011, 17, 1605-1613.	10 Tf 50 2 1.7	27 Td (Dipyrr 90
105	Preparation and Photodynamic Activities of Silicon(IV) Phthalocyanines Substituted with Permethylated β yclodextrins. Chemistry - A European Journal, 2011, 17, 7569-7577.	1.7	61
106	New dioxo–molybdenum(vi) and –tungsten(vi) complexes with N-capped tripodal N2O2 tetradentate ligands: Synthesis, structures and catalytic activities towards olefin epoxidation. Dalton Transactions, 2010, 39, 4602.	1.6	62
107	Phthalocyanine–Polyamine Conjugates as pH ontrolled Photosensitizers for Photodynamic Therapy. Chemistry - A European Journal, 2010, 16, 4777-4783.	1.7	83
108	Preparation and in vitro photodynamic activity of amphiphilic zinc(II) phthalocyanines substituted with 2-(dimethylamino)ethylthio moieties and their N-alkylated derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 2672-2677.	1.4	35

#	Article	IF	CITATIONS
109	Photodynamic activity of a glucoconjugated silicon(IV) phthalocyanine on human colon adenocarcinoma. Cancer Biology and Therapy, 2010, 10, 126-134.	1.5	13
110	Phthalocyanine-Containing Supramolecular Arrays. Structure and Bonding, 2010, , 169-209.	1.0	18
111	A pH-responsive fluorescence probe and photosensitiser based on a tetraamino silicon(iv) phthalocyanine. Chemical Communications, 2010, 46, 3188.	2.2	110
112	Formation and energy transfer property of a subphthalocyanine–porphyrin complex held by host–guest interactions. Physical Chemistry Chemical Physics, 2010, 12, 7366.	1.3	23
113	Efficient and Recyclable Phthalocyanine-Based Sensitizers for PhotoÂoxygenation Reactions. Synthesis, 2009, 2009, 1791-1796.	1.2	3
114	Preparation, Spectroscopic Properties, and Stability of Waterâ€Soluble Subphthalocyanines. Chemistry - an Asian Journal, 2009, 4, 104-110.	1.7	18
115	Switching the photo-induced energy and electron-transfer processes in BODIPY–phthalocyanine conjugates. Chemical Communications, 2009, , 1517.	2.2	74
116	A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolatoâ^'Rare Earth Complexes. Accounts of Chemical Research, 2009, 42, 79-88.	7.6	328
117	Synthesis and in vitro photodynamic activities of di-α-substituted zinc(ii) phthalocyanine derivatives. Dalton Transactions, 2009, , 4129.	1.6	61
118	Spectroscopic study of electron and energy transfer in novel silicon phthalocyanine—boron dipyrromethene triads. Physical Chemistry Chemical Physics, 2009, 11, 6430.	1.3	33
119	Effects of the number and position of the substituents on the in vitro photodynamic activities of glucosylated zinc(ii) phthalocyanines. Organic and Biomolecular Chemistry, 2009, 7, 1583.	1.5	57
120	Effects of Peripheral Chloro Substitution on the Photophysical Properties and in vitro Photodynamic Activities of Galactoseâ€Conjugated Silicon(IV) Phthalocyanines. ChemMedChem, 2008, 3, 1110-1117.	1.6	23
121	Highly Efficient Energy Transfer in Subphthalocyanineâ `BODIPY Conjugates. Organic Letters, 2008, 10, 5421-5424.	2.4	156
122	Construction of Subphthalocyanineâ^'Porphyrin and Subphthalocyanineâ^'Phthalocyanine Heterodyads through Axial Coordination. Inorganic Chemistry, 2008, 47, 7921-7927.	1.9	47
123	Glycosylated zinc(ii) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Organic and Biomolecular Chemistry, 2008, 6, 2173.	1.5	85
124	Highly photocytotoxic 1,4-dipegylated zinc(ii) phthalocyanines. Effects of the chain length on the in vitro photodynamic activities. Organic and Biomolecular Chemistry, 2008, 6, 4560.	1.5	65
125	Synthesis, Characterization, and In Vitro Photodynamic Activity of Novel Amphiphilic Zinc(II) Phthalocyanines Bearing Oxyethylene-Rich Substituents. Metal-Based Drugs, 2008, 2008, 1-8.	3.8	6
126	Highly Photocytotoxic Glucosylated Silicon(IV) Phthalocyanines. Effects of Peripheral Chloro Substitution on the Photophysical and Photodynamic Properties. Journal of Medicinal Chemistry, 2007, 50, 2100-2107.	2.9	87

#	Article	IF	CITATIONS
127	Assembling a Mixed Phthalocyanineâ^'Porphyrin Array in Aqueous Media through Hostâ^'Guest Interactionsâ€. Organic Letters, 2007, 9, 231-234.	2.4	42
128	The Influence of Solvent Polarity and Metalation on Energy and Electron Transfer in Porphyrinâ^'Phthalocyanine Heterotrimers. Journal of Physical Chemistry B, 2007, 111, 8053-8062.	1.2	50
129	Photodynamic effects of a novel series of silicon(IV) phthalocyanines against human colon adenocarcinoma cells. Photodiagnosis and Photodynamic Therapy, 2007, 4, 117-123.	1.3	30
130	Synthesis, photophysical properties and in vitro photodynamic activity of axially substituted subphthalocyanines. Organic and Biomolecular Chemistry, 2007, 5, 3987.	1.5	67
131	Porphyrin-Appended Europium(III) Bis(phthalocyaninato) Complexes: Synthesis, Characterization, and Photophysical Properties. Chemistry - A European Journal, 2007, 13, 4169-4177.	1.7	42
132	Axial Coordination of Porphyrinatocobalt(II) Complexes with Bis(pyridinolato)silicon(IV) Phthalocyanines. European Journal of Inorganic Chemistry, 2007, 2007, 4615-4620.	1.0	12
133	Synthesis and in vitro photodynamic activity of mono-substituted amphiphilic zinc(II) phthalocyanines. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1073-1077.	1.0	23
134	Hostâ^'Guest Interactions of 4-Carboxyphenoxy Phthalocyanines and β-Cyclodextrins in Aqueous Media. Organic Letters, 2007, 9, 2497-2500.	2.4	28
135	Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. Inorganic Chemistry, 2006, 45, 3794-3802.	1.9	88
136	Electron-Donating or -Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. Inorganic Chemistry, 2006, 45, 2327-2334.	1.9	169
137	Preparation and in vitro photodynamic activities of novel axially substituted silicon (IV) phthalocyanines and their bovine serum albumin conjugates. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2450-2453.	1.0	57
138	Preparation and in vitro photodynamic activity of novel silicon(IV) phthalocyanines conjugated to serum albumins. Journal of Inorganic Biochemistry, 2006, 100, 946-951.	1.5	35
139	Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(III) Double-Decker Complexes: The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. Chemistry - A European Journal, 2006, 12, 1475-1485.	1.7	90
140	Lanthanide(III) Double-Decker Complexes with Octaphenoxy- or Octathiophenoxyphthalocyaninato Ligands – Revealing the Electron-Withdrawing Nature of the Phenoxy and Thiophenoxy Groups in the Double-Decker Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 3703-3709.	1.0	42
141	BAM-SiPc, a novel agent for photodynamic therapy, Induces apoptosis in human hepatocarcinoma HepG2 cells by a direct mitochondrial action. Cancer Biology and Therapy, 2006, 5, 413-418.	1.5	31
142	Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 2612-2618.	1.0	38
143	Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. Chemistry - A European Journal, 2005, 11, 1425-1432.	1.7	83
144	Studies of "Pinwheel-Like―Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] Rare Earth(III) Double-Decker Complexes. Chemistry - A European Journal, 2005, 11, 7351-7357.	1.7	56

#	Article	IF	CITATIONS
145	Synthesis and in vitro Photodynamic Activity of New Hexadeca-Carboxy Phthalocyanines ChemInform, 2005, 36, no.	0.1	0
146	Synthesis, characterization, and degradation of silicon(IV) phthalocyanines conjugated axially with poly(sebacic anhydride). Journal of Polymer Science Part A, 2005, 43, 837-843.	2.5	11
147	Fluorescence anisotropy and transient absorption of halogenated silicon(IV) phthalocyanines with axial poly(ethylene-glycol) substituents. Journal of Porphyrins and Phthalocyanines, 2005, 09, 298-302.	0.4	5
148	Heteroleptic Rare Earth Double-Decker Complexes with Naphthalocyaninato and Phthalocyaninato Ligands. General Synthesis, Spectroscopic, and Electrochemical Characteristics. Inorganic Chemistry, 2005, 44, 2114-2120.	1.9	35
149	Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines. Chemical Communications, 2004, , 2236.	2.2	50
150	Formation and Degradation of Poly(D,L-lactide) Nanoparticles and Their Potential Application as Controllable Releasing Devices. Macromolecular Bioscience, 2004, 4, 901-906.	2.1	27
151	New Amphiphilic Silicon(IV) Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy: Synthesis, Photophysical Properties, and in vitro Photodynamic Activities. Chemistry - A European Journal, 2004, 10, 4831-4838.	1.7	114
152	The First Slipped Pseudo-Quadruple-Decker Complex of Phthalocyanines. Inorganic Chemistry, 2004, 43, 4740-4742.	1.9	40
153	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted) Tj ETQq1 1	0.784314 1.9	∔rgBT /Over
154	Synthesis, spectroscopic properties, and electrochemistry of heteroleptic rare earth double-decker complexes with phthalocyaninato and meso-tetrakis (4-chlorophenyl)porphyrinato ligands. New Journal of Chemistry, 2004, 28, 1116-1122.	1.4	57
155	Halogenated silicon(iv) phthalocyanines with axial poly(ethylene glycol) chains. Synthesis, spectroscopic properties, complexation with bovine serum albumin and in vitro photodynamic activitiesDedicated to Prof. Malcolm L. H. Green on the occasion of his retirement, with our warmest congratulations New Journal of Chemistry, 2004, 28, 348.	1.4	69
156	Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. Journal of the American Chemical Society, 2003, 125, 12257-12267.	6.6	158
157	Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexesElectronic supplementary information (ESI) available: 1H NMR spectrum of {SmIII(Pc)[Pc(OC5H11)4]}– in CDCl3/DMSO-d6 (1â^¶1) in the presence of a few drops of hydrazine hydrate. See http://www.rsc.org/suppdata/cc/b3/b301139a/. Chemical Communications, 2003, ,	2.2	60
158	Rr94=1995. Synthesis, Characterization, Biodegradation, and in Vitro Photodynamic Activities of Silicon(IV) Phthalocyanines Conjugated Axially with Poly(Îμ-caprolactone). Macromolecules, 2003, 36, 7527-7533.	2.2	33
159	New dimeric supramolecular structure of mixed (phthalocyaninato)(porphyrinato)europium(iii) sandwiches: preparation and spectroscopic characteristicsElectronic supplementary information (ESI) available: experimental and simulated MALDI-TOF mass spectra of 3; IR spectra of 1, SM1, 3 and SM3. See http://www.rsc.org/suppdata/im/b3/b300529a/. Journal of Materials Chemistry. 2003, 13, 1333.	6.7	25
160	Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. New Journal of Chemistry, 2003, 27, 844-849.	1.4	36
161	Formation and crystal structure of an unexpected inclusion complex of a metal-free phthalocyanine and oxalic acidElectronic supplementary information (ESI) available: experimental procedure to prepare compound 3 and its characterising data. See http://www.rsc.org/suppdata/cc/b1/b111133g/. Chemical Communications. 2002 628-629.	2.2	25
162	Encapsulation of Phthalocyanines in Biodegradable Poly(sebacic anhydride) Nanoparticles. Langmuir, 2002, 18, 3843-3847.	1.6	96

#	Article	IF	CITATIONS
163	New Chloro, μ-Oxo, and Alkyl Derivatives of Dioxomolybdenum(VI) and -Tungsten(VI) Complexes Chelated with N2O Tridentate Ligands:  Synthesis and Catalytic Activities toward Olefin Epoxidation. Inorganic Chemistry, 2002, 41, 5276-5285.	1.9	35
164	Transient Absorption and Fluorescence Studies of Disstacking Phthalocyanine by Poly(ethylene oxide). Macromolecules, 2002, 35, 3681-3685.	2.2	28
165	Disstacking of Phthalocyanine in Water by Poly(ethylene Oxide). Langmuir, 2001, 17, 1381-1383.	1.6	27
166	Tetrapyrrole Derivatives Substituted with Ferrocenylethynyl Moieties. Synthesis and Electrochemical Studiesâ€. Journal of Organic Chemistry, 2001, 66, 1553-1559.	1.7	70
167	Synthesis, structure and oxo-transfer properties of dioxotungsten(VI) complexes with pyridine-based NO-and NS-bidentate ligands. New Journal of Chemistry, 2001, 25, 353-357.	1.4	37
168	Monomerization of Cationic Phthalocyanine in AOT Reversed Micellesâ€. Langmuir, 2001, 17, 7957-7959.	1.6	17
169	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of Rare Earth Sandwich Compounds with Mixed 2,3-Naphthalocyaninato and Octaethylporphyrinato Ligands. Chemistry - A European Journal, 2001, 7, 5059-5069.	1.7	103
170	Synthesis, Spectroscopic, and Electrochemical Properties of Rare Earth Double-Deckers with Tetra(tert-butyl)-2,3-naphthalocyaninato Ligands. European Journal of Inorganic Chemistry, 2000, 2000, 205-209.	1.0	59
171	Influence of Surfactants on the Aggregation Behavior of Water-Soluble Dendritic Phthalocyanines. Macromolecules, 2000, 33, 2119-2123.	2.2	128
172	Synthesis and structures of dioxo-Mo(VI) and -W(VI) amides. Dalton Transactions RSC, 2000, , 539-544.	2.3	9
173	Synthesis, Electrochemistry, and Oxygen-Atom Transfer Reactions of Dioxotungsten(VI) and -molybdenum(VI) Complexes with N2O2 and N2S2 Tetradentate Ligands. European Journal of Inorganic Chemistry, 1999, 1999, 313-321.	1.0	59
174	Double-decker Yttrium(III) Complexes with Phthalocyaninato and Porphyrinato Ligands. Journal of Porphyrins and Phthalocyanines, 1999, 03, 322-328.	0.4	77
175	Synthesis, Spectroscopic, and Electrochemical Properties of Homoleptic Bis(Substituted-Phthalocyaninato) Cerium(IV) Complexes. Molecular Crystals and Liquid Crystals, 1999, 337, 385-388.	0.3	22
176	Synthesis and Photophysical Properties of Nonaggregated Phthalocyanines Bearing Dendritic Substituents. Macromolecules, 1999, 32, 5292-5298.	2.2	146
177	Dioxotungsten(VI) Complexes with N2O Tridentate Ligands. Synthesis and Structure of the Chloro and Alkyl Derivatives. Organometallics, 1999, 18, 5075-5079.	1.1	14
178	Synthesis and Electrochemistry of Ferrocenylphthalocyanines. Organometallics, 1999, 18, 3528-3533.	1.1	78
179	Synthesis and Spectroscopic Characterization of Heteroleptic Europium(III) Double-deckers Containing 2,3-Naphthalocyaninato and Tetra(4-pyridyl)porphyrinato Ligands. Chemistry Letters, 1999, 28, 261-262.	0.7	28
180	Synthesis of Mixed Aza, Oxa and Thia Crown Ethers. Journal of Chemical Research Synopses, 1998, , 414-415.	0.3	7

#	Article	IF	CITATIONS
181	cis-Dioxo-tungsten(VI) and -molybdenum(VI) complexes with N2O2 tetradentate ligands: synthesis, structure, electrochemistry and oxo-transfer properties. Journal of the Chemical Society Dalton Transactions, 1998, , 3057-3064.	1.1	87
182	Facile Synthesis and Nonlinear Optical Properties of Pushâ^'Pull 5,15-Diphenylporphyrins. Journal of Organic Chemistry, 1998, 63, 7143-7150.	1.7	96
183	Preparation, solution behaviour and electrical properties of octasubstituted phthalocyaninato and 2,3-naphthalocyaninato oxotitanium(IV) complexes. Journal of Materials Chemistry, 1997, 7, 2063-2067.	6.7	41
184	Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. Chemical Society Reviews, 1997, 26, 433.	18.7	267
185	Fourier transform ion cyclotron resonance studies of lanthanide(III) porphyrin-phthalocyanine heteroleptic sandwich complexes by using electrospray ionization. Journal of the American Society for Mass Spectrometry, 1997, 8, 161-169.	1.2	51
186	Isolation and Spectroscopic Characterization of Heteroleptic, Anionic and Neutral (Phthalocyaninato)(tetraâ€4â€pyridylporphyrinato)lanthanide(III) Doubleâ€Deckers. Chemische Berichte, 1996, 129, 933-936.	0.2	58
187	Cycloheptatriene and -enyl Complexes of the Early Transition Metals. Chemical Reviews, 1995, 95, 439-473.	23.0	139
188	Nickel-Catalyzed Cross Coupling of Cyclopropyl Grignard Reagents with Benzylic Dithioacetals. Regioselective Ring Opening of Cyclopropylcarbinyl Organometallic Intermediates. Novel Synthesis of Substituted Dienes. Organometallics, 1994, 13, 1487-1497.	1.1	21
189	Transition metal promoted reaction. 34. Unified synthesis of vinylsilanes and silylated butadienes. Nickel-catalyzed olefination and silylolefination of dithioacetals. Journal of the American Chemical Society, 1990, 112, 9356-9364.	6.6	61
190	Transition metal promoted reactions. 29. (Z)-2,2'-Disubstituted bifluorenylidenes by intramolecular desulfurdimerization reactions. Journal of Organic Chemistry, 1990, 55, 1881-1889.	1.7	34
191	Transition metal promoted reactions. 30. Cyclopropyl anion as an allyl anion synthon. Novel synthesis of butadienes by nickel-catalyzed coupling of cyclopropyl Grignard reagents with dithioacetals.	6.6	23