
Jacques Couet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Peptide and Protein Ligands for the Caveolin-scaffolding Domain. Journal of Biological Chemistry, 1997, 272, 6525-6533.	3.4	792
2	Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. Journal of Biological Chemistry, 1997, 272, 25437-25440.	3.4	731
3	Src Tyrosine Kinases, Cα Subunits, and H-Ras Share a Common Membrane-anchored Scaffolding Protein, Caveolin. Journal of Biological Chemistry, 1996, 271, 29182-29190.	3.4	703
4	Interaction of a Receptor Tyrosine Kinase, EGF-R, with Caveolins. Journal of Biological Chemistry, 1997, 272, 30429-30438.	3.4	584
5	Cell-type and Tissue-specific Expression of Caveolin-2. Journal of Biological Chemistry, 1997, 272, 29337-29346.	3.4	466
6	Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studiesâ~†. Acta Biomaterialia, 2010, 6, 1852-1860.	8.3	291
7	Caveolin Interaction with Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 33416-33421.	3.4	230
8	Reduction of Caveolin 1 Gene Expression in Lung Carcinoma Cell Lines. Biochemical and Biophysical Research Communications, 1999, 255, 580-586.	2.1	147
9	Assessing the biocompatibility of degradable metallic materials: State-of-the-art and focus on the potential of genetic regulationâ~†. Acta Biomaterialia, 2010, 6, 1800-1807.	8.3	130
10	Cell biology of caveolae and caveolin. Advanced Drug Delivery Reviews, 2001, 49, 223-235.	13.7	109
11	Molecular and Cellular Biology of Caveolae. Trends in Cardiovascular Medicine, 1997, 7, 103-110.	4.9	108
12	A High Fat/High Carbohydrate Diet Induces Aortic Valve Disease in C57BL/6J Mice. Journal of the American College of Cardiology, 2006, 47, 850-855.	2.8	105
13	Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biology and Therapy, 2004, 3, 954-959.	3.4	58
14	Effectiveness of β-Blockade in Experimental Chronic Aortic Regurgitation. Circulation, 2004, 110, 1477-1483.	1.6	55
15	Benefits of long-term β-blockade in experimental chronic aortic regurgitation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1888-H1895.	3.2	45
16	An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14044.	4.1	45
17	Impact of Anesthesia on Echocardiographic Evaluation of Systolic and Diastolic Function in Rats. Journal of the American Society of Echocardiography, 2006, 19, 1520-1525.	2.8	44
18	Left ventricular response to sustained volume overload from chronic aortic valve regurgitation in rats. Journal of Cardiac Failure, 2003, 9, 128-140.	1.7	41

JACQUES COUET

#	Article	IF	CITATIONS
19	Moderate Exercise Training Improves Survival and Ventricular Remodeling in an Animal Model of Left Ventricular Volume Overload. Circulation: Heart Failure, 2009, 2, 437-445.	3.9	40
20	Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells. Anti-Cancer Drugs, 2003, 14, 281-287.	1.4	39
21	A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H125-H134.	3.2	37
22	Usefulness of Carvedilol in the Treatment of Chronic Aortic Valve Regurgitation. Circulation: Heart Failure, 2011, 4, 207-213.	3.9	35
23	Experimental aortic regurgitation in rats under echocardiographic guidance. Journal of Heart Valve Disease, 2002, 11, 128-34.	0.5	34
24	Gene profiling of left ventricle eccentric hypertrophy in aortic regurgitation in rats: rationale for targeting the l²-adrenergic and renin-angiotensin systems. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H669-H677.	3.2	33
25	Attenuated Mitral Leaflet Enlargement Contributes to Functional Mitral Regurgitation After Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 395-405.	2.8	33
26	Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation. Canadian Journal of Physiology and Pharmacology, 2004, 82, 191-199.	1.4	30
27	Loss of OcaB Prevents Age-Induced Fat Accretion and Insulin Resistance by Altering B-Lymphocyte Transition and Promoting Energy Expenditure. Diabetes, 2018, 67, 1285-1296.	0.6	25
28	Comparative Study of Vasodilators in an Animal Model of Chronic Volume Overload Caused by Severe Aortic Regurgitation. Circulation: Heart Failure, 2009, 2, 25-32.	3.9	24
29	Angiotensin Il–Converting Enzyme Inhibition Improves Survival, Ventricular Remodeling, and Myocardial Energetics in Experimental Aortic Regurgitation. Circulation: Heart Failure, 2013, 6, 1021-1028.	3.9	20
30	G2/M blockade by paclitaxel induces caveolin-1 expression in A549 lung cancer cells: caveolin-1 as a marker of cytotoxicity. Anti-Cancer Drugs, 2004, 15, 961-967.	1.4	18
31	Gender-related differences in left ventricular remodeling in chronic severe aortic valve regurgitation in rats. Journal of Heart Valve Disease, 2006, 15, 345-51.	0.5	17
32	Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation. BMC Cardiovascular Disorders, 2014, 14, 123.	1.7	16
33	Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model. Journal of Heart Valve Disease, 2008, 17, 300-8.	0.5	15
34	Treatment of Combined Aortic Regurgitation and Systemic Hypertension: Insights From an Animal Model Study. American Journal of Hypertension, 2006, 19, 843-850.	2.0	14
35	Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents. Acta Biomaterialia, 2013, 9, 8746-8753.	8.3	14
36	Female rats with severe left ventricle volume overload exhibit more cardiac hypertrophy but fewer myocardial transcriptional changes than males. Scientific Reports, 2017, 7, 729.	3.3	13

JACQUES COUET

#	Article	IF	CITATIONS
37	Ablation of Potassium-Chloride Cotransporter Type 3 (Kcc3) in Mouse Causes Multiple Cardiovascular Defects and Isosmotic Polyuria. PLoS ONE, 2016, 11, e0154398.	2.5	13
38	Effects of Exercise in Volume Overload. Medicine and Science in Sports and Exercise, 2009, 41, 1230-1238.	0.4	11
39	Endurance training or beta-blockade can partially block the energy metabolism remodeling taking place in experimental chronic left ventricle volume overload. BMC Cardiovascular Disorders, 2014, 14, 190.	1.7	11
40	Multiple shortâ€chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy. FEBS Open Bio, 2018, 8, 1624-1635.	2.3	10
41	Testosterone deficiency reduces cardiac hypertrophy in a rat model of severe volume overload. Physiological Reports, 2019, 7, e14088.	1.7	10
42	Effects of spironolactone treatment on an experimental model of chronic aortic valve regurgitation. Journal of Heart Valve Disease, 2012, 21, 478-86.	0.5	10
43	Fenofibrate reduces cardiac remodeling and improves cardiac function in a rat model of severe left ventricle volume overload. Life Sciences, 2013, 92, 26-34.	4.3	9
44	Transcriptional Changes Associated with Long-Term Left Ventricle Volume Overload in Rats: Impact on Enzymes Related to Myocardial Energy Metabolism. BioMed Research International, 2015, 2015, 1-15.	1.9	9
45	Segmental analysis by speckle-tracking echocardiography of the left ventricle response to isoproterenol in male and female mice. PeerJ, 2021, 9, e11085.	2.0	7
46	Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy. PeerJ, 2019, 7, e7461.	2.0	6
47	Blockade of the acute activation of mTOR complex 1 decreases hypertrophy development in rats with severe aortic valve regurgitation. SpringerPlus, 2015, 4, 435.	1.2	5
48	Effects of the loss of estrogen on the heart's hypertrophic response to chronic left ventricle volume overload in rats. PeerJ, 2019, 7, e7924.	2.0	5
49	Caveolin: A possible biomarker of degradable metallic materials toxicity in vascular cells. Acta Biomaterialia, 2013, 9, 8754-8760.	8.3	4
50	Sex differences in the evolution of left ventricle remodeling in rats with severe volume overload. BMC Cardiovascular Disorders, 2020, 20, 51.	1.7	4
51	Early Activation of Growth Pathways in Mitral Leaflets Exposed to Aortic Regurgitation: New Insights from an Animal Model. Journal of Heart Valve Disease, 2017, 26, 281-289.	0.5	1