Eduardo A Ximenes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1958159/publications.pdf Version: 2024-02-01

FOUADO A XIMENES

#	Article	IF	CITATIONS
1	Combined Sugarcane Pretreatment for the Generation of Ethanol and Value-Added Products. Frontiers in Energy Research, 2022, 10, .	1.2	5
2	Phase-Sensitive Intracellular Doppler Fluctuation Spectroscopy. Physical Review Applied, 2021, 15, .	1.5	4
3	Doppler imaging detects bacterial infection of living tissue. Communications Biology, 2021, 4, 178.	2.0	6
4	Protective effects of non atalytic proteins on endoglucanase activity at air and lignin interfaces. Biotechnology Progress, 2021, 37, e3134.	1.3	1
5	Cellulolytic enzymes production guided by morphology engineering. Enzyme and Microbial Technology, 2021, 149, 109833.	1.6	5
6	Rheology of enzyme liquefied corn stover slurries: The effect of solids concentration on yielding and flow behavior. Biotechnology Progress, 2021, 37, e3216.	1.3	8
7	Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion) Tj ETQq1 2 2021, 342, 125961.	0.784314 4.8	rgBT /Over 83
8	New strategy for liquefying corn stover pellets. Bioresource Technology, 2021, 341, 125773.	4.8	11
9	Moving from residual lignocellulosic biomass into highâ€value products: Outcomes from a longâ€ŧerm international cooperation. Biofuels, Bioproducts and Biorefining, 2021, 15, 563-573.	1.9	12
10	Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor. Biotechnology Progress, 2020, 36, e3059.	1.3	11
11	Construction and operation of a multiplexed microfiltration device to facilitate rapid pathogen detection. Biotechnology Progress, 2019, 35, e2889.	1.3	2
12	Microbial enrichment and multiplexed microfiltration for accelerated detection of <i>Salmonella</i> in spinach. Biotechnology Progress, 2019, 35, e2874.	1.3	9
13	Adaptive laboratory evolution of nanocelluloseâ€producing bacterium. Biotechnology and Bioengineering, 2019, 116, 1923-1933.	1.7	24
14	Impact of protein blocking on enzymatic saccharification of bagasse from sugarcane clones. Biotechnology and Bioengineering, 2019, 116, 1584-1593.	1.7	16
15	Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 2019, 37, 518-531.	4.9	183
16	Accelerated Sample Preparation for Fast Salmonella Detection in Poultry Products. Methods in Molecular Biology, 2019, 1918, 3-20.	0.4	6
17	Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. Bioresource Technology, 2018, 252, 143-149.	4.8	37
18	Foodborne pathogens in horticultural production systems: Ecology and mitigation. Scientia Horticulturae, 2018, 236, 192-206.	1.7	40

EDUARDO A XIMENES

#	Article	IF	CITATIONS
19	Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnology and Bioengineering, 2017, 114, 1403-1418.	1.7	18
20	Protein particulate retention and microorganism recovery for rapid detection of <i>Salmonella</i> . Biotechnology Progress, 2017, 33, 687-695.	1.3	10
21	Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production. , 2017, , 181-205.		12
22	Proteins at heterogeneous (lignocellulose) interfaces. Current Opinion in Chemical Engineering, 2017, 18, 45-54.	3.8	4
23	Enhanced Antimicrobial Efficacy of Bimetallic Porous CuO Microspheres Decorated with Ag Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 39165-39173.	4.0	41
24	Cellulose conversion of corn pericarp without pretreatment. Bioresource Technology, 2017, 245, 511-517.	4.8	29
25	Microfiltration of enzyme treated egg whites for accelerated detection of viable <i>Salmonella</i> . Biotechnology Progress, 2016, 32, 1464-1471.	1.3	10
26	Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Enzyme and Microbial Technology, 2016, 90, 53-60.	1.6	86
27	Maleic acid treatment of biologically detoxified corn stover liquor. Bioresource Technology, 2016, 216, 437-445.	4.8	25
28	Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods. Data in Brief, 2016, 8, 588-598.	0.5	15
29	Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresource Technology, 2016, 199, 275-278.	4.8	87
30	Accelerating sample preparation through enzymeâ€assisted microfiltration of <i>Salmonella</i> in chicken extract. Biotechnology Progress, 2015, 31, 1551-1562.	1.3	21
31	Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresource Technology, 2015, 190, 412-415.	4.8	44
32	Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell, 2015, 27, 2195-2209.	3.1	136
33	Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2015, 112, 252-262.	1.7	283
34	Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnology and Bioengineering, 2015, 112, 447-456.	1.7	207
35	Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection. Annual Review of Analytical Chemistry, 2014, 7, 65-88.	2.8	42
36	Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 2014, 509, 376-380.	13.7	313

EDUARDO A XIMENES

#	Article	IF	CITATIONS
37	Biological abatement of cellulase inhibitors. Bioresource Technology, 2013, 146, 604-610.	4.8	49
38	Rapid Sample Processing for Detection of Food-Borne Pathogens via Cross-Flow Microfiltration. Applied and Environmental Microbiology, 2013, 79, 7048-7054.	1.4	46
39	Tissueâ€specific biomass recalcitrance in corn stover pretreated with liquid hotâ€water: SEM imaging (part 2). Biotechnology and Bioengineering, 2012, 109, 398-404.	1.7	40
40	Tissueâ€specific biomass recalcitrance in corn stover pretreated with liquid hotâ€water: Enzymatic hydrolysis (part 1). Biotechnology and Bioengineering, 2012, 109, 390-397.	1.7	69
41	Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 2011, 48, 408-415.	1.6	398
42	Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 2011, 48, 54-60.	1.6	436
43	Inhibition of cellulases by phenols. Enzyme and Microbial Technology, 2010, 46, 170-176.	1.6	403
44	Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnology for Biofuels, 2010, 3, 27.	6.2	178
45	Ethanol Production from Maize. Biotechnology in Agriculture and Forestry, 2009, , 347-364.	0.2	25
46	Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. Applied Biochemistry and Biotechnology, 2008, 146, 89-100.	1.4	7
47	Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers' grains and their conversion to ethanol. Bioresource Technology, 2008, 99, 5216-5225.	4.8	144
48	Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. , 2008, , 209-220.		1
49	Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Applied Microbiology and Biotechnology, 2007, 74, 1264-1275.	1.7	32
50	ldentification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnology Letters, 2007, 29, 1195-1201.	1.1	25
51	Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants. Applied Biochemistry and Biotechnology, 2007, 137-140, 171-183.	1.4	18
52	Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. , 2007, 74, 1264.		1
53	A mannanase, ManA, of the polycentric anaerobic fungusOrpinomycessp. strain PC-2 has carbohydrate binding and docking modules. Canadian Journal of Microbiology, 2005, 51, 559-568.	0.8	23
54	Properties of a Recombinant β-Glucosidase from Polycentric Anaerobic Fungus Orpinomyces PC-2 and Its Application for Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2004, 113, 233-250.	1.4	17

#	Article	IF	CITATIONS
55	Properties of a Recombinant β-Glucosidase from Polycentric Anaerobic Fungus Orpinomyces PC-2 and Its Application for Cellulose Hydrolysis. , 2004, , 233-250.		0
56	CelF of Orpinomyces PC-2 Has an Intron and Encodes a Cellulase (CelF) Containing a Carbohydrate-Binding Module. Applied Biochemistry and Biotechnology, 2003, 108, 775-786.	1.4	20
57	CelF of Orpinomyces PC-2 Has an Intron and Encodes a Cellulase (CelF) Containing a Carbohydrate-Binding Module. , 2003, , 775-785.		0
58	Noncatalytic Docking Domains of Cellulosomes of Anaerobic Fungi. Journal of Bacteriology, 2001, 183, 5325-5333.	1.0	66
59	Production of Cellulases by Aspergillus fumigatus and Characterization of One β-Glucosidase. Current Microbiology, 1996, 32, 119-123.	1.0	72