## Ding Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1956799/publications.pdf Version: 2024-02-01



DINC 7HAO

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thermal photonics boosts radiative cooling. Light: Science and Applications, 2022, 11, 35.                                                                                                  | 16.6 | 2         |
| 2  | Recording Messages on Nonplanar Objects by Cryogenic Electronâ€Beam Writing. Advanced Functional<br>Materials, 2022, 32, .                                                                  | 14.9 | 5         |
| 3  | 3D Nanoprinting by Electron-Beam with an Ice Resist. ACS Applied Materials & Interfaces, 2022, 14, 1652-1658.                                                                               | 8.0  | 4         |
| 4  | Plasma-Assisted Microcontact Printing. ACS Applied Materials & amp; Interfaces, 2022, , .                                                                                                   | 8.0  | 0         |
| 5  | Ice-assisted electron-beam lithography for MoS <sub>2</sub> transistors with extremely low-energy electrons. Nanoscale Advances, 2022, 4, 2479-2483.                                        | 4.6  | 1         |
| 6  | Theoretical modeling of ice lithography on amorphous solid water. Nanoscale, 2022, 14, 9045-9052.                                                                                           | 5.6  | 4         |
| 7  | Lithographic properties of amorphous solid water upon exposure to electrons. Applied Surface Science, 2021, 539, 148265.                                                                    | 6.1  | 6         |
| 8  | Electron-Beam Irradiation Induced Regulation of Surface Defects in Lead Halide Perovskite Thin Films.<br>Research, 2021, 2021, 9797058.                                                     | 5.7  | 9         |
| 9  | Direct assembly of nanowires by electron beam-induced dielectrophoresis. Nanotechnology, 2021, 32, 415602.                                                                                  | 2.6  | 1         |
| 10 | High-Throughput Wafer-Scale Wrinkle Patterning: a Single-Step Fabrication Process and Applications for Tunable Optical Transmittance. ACS Applied Electronic Materials, 2021, 3, 3200-3206. | 4.3  | 3         |
| 11 | MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies.<br>Microsystems and Nanoengineering, 2021, 7, 59.                                           | 7.0  | 39        |
| 12 | Quasi-Random Gratings Enabled by Wrinkled Photoresist Surfaces on a Rigid Substrate. ACS Applied<br>Materials & Interfaces, 2021, 13, 49535-49541.                                          | 8.0  | 2         |
| 13 | Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography. Nano Letters, 2020, 20, 8841-8846.                                                                            | 9.1  | 31        |
| 14 | Direct electron-beam patterning of monolayer MoS <sub>2</sub> with ice. Nanoscale, 2020, 12, 22473-22477.                                                                                   | 5.6  | 13        |
| 15 | Development of an in-situ nanofabrication instrument for ice lithography. Microelectronic<br>Engineering, 2020, 224, 111251.                                                                | 2.4  | 10        |
| 16 | Electron-Beam Patterning of Vapor-Deposited Solid Anisole. ACS Applied Materials & Interfaces, 2020, 12, 6436-6441.                                                                         | 8.0  | 14        |
| 17 | Towards Nanoscale 3d Printing of Pdms-Like Polymers. , 2019, , .                                                                                                                            |      | 0         |
| 18 | Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nature Communications, 2019, 10, 396.                                                                     | 12.8 | 162       |

Ding Zhao

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ice lithography for 3D nanofabrication. Science Bulletin, 2019, 64, 865-871.                                                                                                                                                      | 9.0 | 38        |
| 20 | Gain-Assisted Plasmon Resonance Narrowing and Its Application in Sensing. Physical Review Applied, 2019, 11, .                                                                                                                    | 3.8 | 21        |
| 21 | Large Area Threeâ€Dimensional Photonic Crystal Membranes: Singleâ€Run Fabrication and Applications<br>with Embedded Planar Defects. Advanced Optical Materials, 2019, 7, 1801176.                                                 | 7.3 | 17        |
| 22 | Effect of Molecular Weight on the Feature Size in Organic Ice Resists. Nano Letters, 2018, 18, 7576-7582.                                                                                                                         | 9.1 | 13        |
| 23 | Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice. Nano Letters, 2018, 18, 5036-5041.                                                                                                                           | 9.1 | 46        |
| 24 | Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced Tamm plasmon.<br>Optics Letters, 2018, 43, 5230.                                                                                                   | 3.3 | 34        |
| 25 | Mode Modification of Plasmonic Gap Resonances Induced by Strong Coupling with Molecular<br>Excitons. Nano Letters, 2017, 17, 3246-3251.                                                                                           | 9.1 | 60        |
| 26 | Strongly enhanced molecular fluorescence with ultra-thin optical magnetic mirror metasurfaces.<br>Optics Letters, 2017, 42, 4478.                                                                                                 | 3.3 | 12        |
| 27 | Ultra-broad band absorber made by tungsten and aluminium. Journal of Physics: Conference Series, 2016, 680, 012039.                                                                                                               | 0.4 | 0         |
| 28 | Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films. Advanced Optical Materials, 2016, 4, 480-486.                                                                 | 7.3 | 94        |
| 29 | Laser-induced single point nanowelding of silver nanowires. Applied Physics Letters, 2016, 108, .                                                                                                                                 | 3.3 | 43        |
| 30 | Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting. Scientific Reports, 2016, 6, 29195.                                                                              | 3.3 | 14        |
| 31 | Narrowband Absorbers: Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D<br>Grating Nanostructures on Metallic Films (Advanced Optical Materials 3/2016). Advanced Optical<br>Materials, 2016, 4, 488-488. | 7.3 | 1         |
| 32 | Angle Robust Reflection/Transmission Plasmonic Filters Using Ultrathin Metal Patch Array. Advanced<br>Optical Materials, 2016, 4, 1981-1986.                                                                                      | 7.3 | 44        |
| 33 | Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films.<br>Applied Physics Letters, 2015, 107, .                                                                                     | 3.3 | 29        |
| 34 | Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates. Scientific Reports, 2015, 5, 13424.                                                                                      | 3.3 | 13        |
| 35 | Nanowelding through plasmonic enhanced photothermal effects. , 2015, , .                                                                                                                                                          |     | 0         |
| 36 | Universal scaling behavior of the temperature increase of a heat nanoparticle on a substrate. Journal of Nanophotonics, 2015, 9, 093046.                                                                                          | 1.0 | 0         |

Ding Zhao

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plasmonic sectoral horn nanoantennas. Optics Letters, 2014, 39, 3204.                                                                                             | 3.3 | 28        |
| 38 | Grating-assisted enhanced optical transmission through a seamless gold film. Optics Express, 2014, 22, 5416.                                                      | 3.4 | 21        |
| 39 | Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Applied Physics Letters, 2014, 104, .                                              | 3.3 | 100       |
| 40 | Film-coupled log-periodic optical antennas for near-infrared light absorption. , 2014, , .                                                                        |     | 0         |
| 41 | Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles. Plasmonics, 2014, 9, 623-630.                                                          | 3.4 | 38        |
| 42 | Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale, 2014, 6, 1756-1762.                                                    | 5.6 | 35        |
| 43 | Multi-narrowband absorber based on subwavelength grating structure. Optics Communications, 2014, 331, 310-315.                                                    | 2.1 | 17        |
| 44 | Plasmonic enhanced photothermal effects and its applications. , 2014, , .                                                                                         |     | 0         |
| 45 | Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Optics Letters, 2014, 39, 1137.                                                           | 3.3 | 162       |
| 46 | Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond<br>laser. Scientific Reports, 2014, 4, 6080.                     | 3.3 | 7         |
| 47 | Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 2013, 21, 13125.                                                | 3.4 | 31        |
| 48 | Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Applied Physics Letters, 2013, 102, 201109. | 3.3 | 15        |
| 49 | Nanostructured plasmonic devices and their applications. , 2013, , .                                                                                              |     | ο         |
| 50 | Near-infrared broadband absorber with film-coupled multilayer nanorods. Optics Letters, 2013, 38, 2247.                                                           | 3.3 | 68        |
| 51 | Polarization-sensitive perfect absorbers at near-infrared wavelengths: Erratum. Optics Express, 2013, 21, A229.                                                   | 3.4 | 9         |
| 52 | Polarization-sensitive perfect absorbers at near-infrared wavelengths. Optics Express, 2013, 21, A111.                                                            | 3.4 | 81        |