Randall H Goldsmith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1956667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting chemistry and molecular systems for quantum information science. Nature Reviews Chemistry, 2020, 4, 490-504.	30.2	247
2	Quantum Interference in Acyclic Systems: Conductance of Cross-Conjugated Molecules. Journal of the American Chemical Society, 2008, 130, 17301-17308.	13.7	219
3	Selective Stabilization and Photophysical Properties of Metastable Perovskite Polymorphs of CsPbl ₃ in Thin Films. Chemistry of Materials, 2017, 29, 8385-8394.	6.7	170
4	Wire-like charge transport at near constant bridge energy through fluorene oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3540-3545.	7.1	164
5	Watching conformational- and photodynamics of single fluorescent proteins in solution. Nature Chemistry, 2010, 2, 179-186.	13.6	143
6	Optical microresonators as single-particle absorption spectrometers. Nature Photonics, 2016, 10, 788-795.	31.4	143
7	Probing Single Biomolecules in Solution Using the Anti-Brownian Electrokinetic (ABEL) Trap. Accounts of Chemical Research, 2012, 45, 1955-1964.	15.6	89
8	Single-Molecule Investigation of Initiation Dynamics of an Organometallic Catalyst. Journal of the American Chemical Society, 2016, 138, 3876-3883.	13.7	67
9	Optical Microresonators for Sensing and Transduction: A Materials Perspective. Advanced Materials, 2017, 29, 1700037.	21.0	67
10	Ultrafast Energy Transfer within Cyclic Self-Assembled Chlorophyll Tetramers. Journal of the American Chemical Society, 2007, 129, 6384-6385.	13.7	64
11	Quantum Interference: The Structural Dependence of Electron Transmission through Model Systems and Cross-Conjugated Molecules. Journal of Physical Chemistry C, 2008, 112, 16991-16998.	3.1	63
12	Carrier Decay Properties of Mixed Cation Formamidinium–Methylammonium Lead Iodide Perovskite [HC(NH2)2]1–x[CH3NH3]xPbI3 Nanorods. Journal of Physical Chemistry Letters, 2016, 7, 5036-5043.	4.6	61
13	Unexpectedly Similar Charge Transfer Rates through Benzo-Annulated Bicyclo[2.2.2]octanes. Journal of the American Chemical Society, 2008, 130, 7659-7669.	13.7	55
14	Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17269-17274.	7.1	53
15	Electron Transfer in Multiply Bridged Donorâ^'Acceptor Molecules:Â Dephasing and Quantum Coherence. Journal of Physical Chemistry B, 2006, 110, 20258-20262.	2.6	52
16	Sculpting Fano Resonances To Control Photonic–Plasmonic Hybridization. Nano Letters, 2017, 17, 6927-6934.	9.1	45
17	Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. Journal of Physical Chemistry Letters, 2014, 5, 1917-1923.	4.6	43
18	Limiting Optical Diodes Enabled by the Phase Transition of Vanadium Dioxide. ACS Photonics, 2018, 5, 2688-2692.	6.6	43

RANDALL H GOLDSMITH

#	Article	IF	CITATIONS
19	Observing Singleâ€Molecule Dynamics at Millimolar Concentrations. Angewandte Chemie - International Edition, 2017, 56, 2399-2402.	13.8	42
20	Structure and dynamics underlying elementary ligand binding events in human pacemaking channels. ELife, 2016, 5, .	6.0	42
21	Chipâ€Scale Fabrication of Highâ€ <i>Q</i> Allâ€Glass Toroidal Microresonators for Singleâ€Particle Labelâ€Free Imaging. Advanced Materials, 2016, 28, 2945-2950.	21.0	41
22	Challenges in Distinguishing Superexchange and Hopping Mechanisms of Intramolecular Charge Transfer through Fluorene Oligomers. Journal of Physical Chemistry A, 2008, 112, 4410-4414.	2.5	37
23	Top-down machine learning approach for high-throughput single-molecule analysis. ELife, 2020, 9, .	6.0	33
24	Role of Collagen Fiber Morphology on Ovarian Cancer Cell Migration Using Image-Based Models of the Extracellular Matrix. Cancers, 2020, 12, 1390.	3.7	29
25	Theory of Apparent Circular Dichroism Reveals the Origin of Inverted and Noninverted Chiroptical Response under Sample Flipping. Journal of the American Chemical Society, 2021, 143, 21519-21531.	13.7	29
26	Revealing Conformational Variants of Solutionâ€Phase Intrinsically Disordered Tau Protein at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2017, 56, 15584-15588.	13.8	26
27	Photothermal mapping and free-space laser tuning of toroidal optical microcavities. Applied Physics Letters, 2013, 103, .	3.3	25
28	Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS Nano, 2019, 13, 12743-12757.	14.6	24
29	Exploring Electronic Structure and Order in Polymers via Single-Particle Microresonator Spectroscopy. Nano Letters, 2018, 18, 1600-1607.	9.1	23
30	Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways. Journal of Physical Chemistry C, 2017, 121, 1062-1071.	3.1	22
31	Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. Journal of the American Chemical Society, 2018, 140, 15827-15841.	13.7	21
32	Two-Dimensional Palladium Nanosheet Intercalated with Gold Nanoparticles for Plasmon-Enhanced Electrocatalysis. ACS Catalysis, 2021, 11, 13721-13732.	11.2	21
33	Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics. ACS Sensors, 2017, 2, 903-908.	7.8	20
34	Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic–Photonic Cavity. Nano Letters, 2020, 20, 50-58.	9.1	20
35	Scaling Laws for Charge Transfer in Multiply Bridged Donor/Acceptor Molecules in a Dissipative Environment. Journal of the American Chemical Society, 2007, 129, 13066-13071.	13.7	18
36	Observing Singleâ€Molecule Dynamics at Millimolar Concentrations. Angewandte Chemie, 2017, 129, 2439-2442.	2.0	18

RANDALL H GOLDSMITH

#	Article	IF	CITATIONS
37	Optical monitoring of polymerizations in droplets with high temporal dynamic range. Chemical Science, 2020, 11, 2647-2656.	7.4	18
38	cAMP binding to closed pacemaker ion channels is non-cooperative. Nature, 2021, 595, 606-610.	27.8	18
39	Extended Range of Dipole-Dipole Interactions in Periodically Structured Photonic Media. Physical Review Letters, 2019, 123, 173901.	7.8	17
40	Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. Optics Express, 2018, 26, 25020.	3.4	16
41	Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles. Analytical Chemistry, 2018, 90, 769-776.	6.5	14
42	Fluorescent Dendrimeric Molecular Catalysts Demonstrate Unusual Scaling Behavior at the Single-Molecule Level. Journal of Physical Chemistry C, 2015, 119, 19703-19714.	3.1	13
43	Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Physical Chemistry Chemical Physics, 2019, 21, 1863-1871.	2.8	13
44	From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning. ACS Nano, 2020, 14, 6589-6598.	14.6	12
45	Probing Heterogeneity and Bonding at Silica Surfaces through Single-Molecule Investigation of Base-Mediated Linkage Failure. Langmuir, 2016, 32, 9171-9179.	3.5	11
46	Investigation of activity, stability, and degradation mechanism of surface-supported Pd-PEPPSI complexes for Suzuki-Miyaura coupling. Molecular Catalysis, 2017, 429, 10-17.	2.0	11
47	Investigating the Mechanism of Post-Treatment on PEDOT/PSS via Single-Particle Absorption Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 30781-30790.	3.1	9
48	Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomaterialia, 2019, 100, 92-104.	8.3	9
49	A molecular computing approach to solving optimization problems via programmable microdroplet arrays. Matter, 2021, 4, 1107-1124.	10.0	7
50	Efficient generation of optical bottle beams. Nanophotonics, 2021, 10, 2893-2901.	6.0	7
51	Optical Spectra of p-Doped PEDOT Nanoaggregates Provide Insight into the Material Disorder. ACS Energy Letters, 2016, 1, 1100-1105.	17.4	5
52	Three-Dimensional Printed Planar Polymer Photonic Topological Insulator Waveguides and Their Robustness to Lattice Defects. ACS Photonics, 2022, 9, 1793-1802.	6.6	5
53	Revealing Conformational Variants of Solutionâ€Phase Intrinsically Disordered Tau Protein at the Singleâ€Molecule Level. Angewandte Chemie, 2017, 129, 15790-15794.	2.0	4
54	Compounding a High-Permittivity Thermoplastic Material and Its Applicability in Manufacturing of Microwave Photonic Crystals. Materials, 2022, 15, 2492.	2.9	4

RANDALL H GOLDSMITH

#	Article	IF	CITATIONS
55	Phase-sensitive photothermal imaging of ultrahigh-Q polyoxide toroidal microresonators. Applied Physics Letters, 2018, 113, 231105.	3.3	3
56	Strong and long-range radiative interaction between resonant transitions. Physical Review Research, 2022, 4, .	3.6	2
57	Underwater ultrasonic topological waveguides by metal additive manufacturing. Applied Physics Letters, 2022, 120, .	3.3	2
58	Watching conformational- and photodynamics of single fluorescent proteins in solution. , 0, .		1
59	Optical Microresonators: Chip-Scale Fabrication of High-QAll-Glass Toroidal Microresonators for Single-Particle Label-Free Imaging (Adv. Mater. 15/2016). Advanced Materials, 2016, 28, 2944-2944.	21.0	0
60	Single-Molecule Fluorescence Imaging of low Affinity Binding Interactions in Pacemaker ion Channels. Biophysical Journal, 2017, 112, 39a.	0.5	0
61	Drumming up single-molecule beats. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11115-11117.	7.1	Ο
62	Cleaning procedure for improved photothermal background of toroidal optical microresonators. Proceedings of SPIE, 2016, , .	0.8	0
63	Optical Microresonators as Single-Particle Absorption Spectrometers: Fano Resonances, Attometer Sensitivity, and Working Toward Single-Molecule Spectroscopic Identification. , 2017, , .		0