
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1956581/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A long isoform of GIV/Girdin contains a PDZ-binding module that regulates localization and G-protein binding. Journal of Biological Chemistry, 2021, 296, 100493.                                                                    | 1.6 | 8         |
| 2  | Design and Characterization of an Intracellular Covalent Ligand for CC Chemokine Receptor 2.<br>Journal of Medicinal Chemistry, 2021, 64, 2608-2621.                                                                                 | 2.9 | 13        |
| 3  | Orphan receptor GPR37L1 remains unliganded. Nature Chemical Biology, 2021, 17, 383-386.                                                                                                                                              | 3.9 | 6         |
| 4  | Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. Journal of<br>Experimental Medicine, 2021, 218, .                                                                                           | 4.2 | 51        |
| 5  | Tackling the complexities of orphan GPCR ligand discovery with rationally assisted approaches. , 2020, , 295-334.                                                                                                                    |     | 2         |
| 6  | Negative allosteric modulators of the human calciumâ€sensing receptor bind to overlapping and<br>distinct sites within the 7â€ŧransmembrane domain. British Journal of Pharmacology, 2020, 177, 1917-1930.                           | 2.7 | 12        |
| 7  | TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin. Proceedings of the United States of America, 2020, 117, 26895-26906.                                                                                | 3.3 | 57        |
| 8  | Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Science Signaling, 2020, 13, .                                                                         | 1.6 | 24        |
| 9  | Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the<br>interdomain cleft of Gαi. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 28763-28774. | 3.3 | 19        |
| 10 | Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. Journal of Leukocyte Biology, 2020, 107, 1123-1135.                                                                 | 1.5 | 9         |
| 11 | Tyrosine-Based Signals Regulate the Assembly of Dapleâ‹PARD3 Complex at Cell-Cell Junctions. IScience, 2020, 23, 100859.                                                                                                             | 1.9 | 9         |
| 12 | Druggable exosites of the human kino-pocketome. Journal of Computer-Aided Molecular Design, 2020, 34, 219-230.                                                                                                                       | 1.3 | 2         |
| 13 | Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biology, 2020, 18, e3000656.                                                                        | 2.6 | 24        |
| 14 | aâ€arrestin ARRDC3 is a Multifunctional Adaptor That Regulates G Proteinâ€Coupled Receptor Signaling<br>and Breast Cancer Invasion. FASEB Journal, 2020, 34, 1-1.                                                                    | 0.2 | 0         |
| 15 | Tyrosineâ€based Signals Converge on Daple&[bull]PARD3 Complex to Fineâ€tune Polarized Planar Cell<br>Migration. FASEB Journal, 2020, 34, 1-1.                                                                                        | 0.2 | 0         |
| 16 | Title is missing!. , 2020, 18, e3000656.                                                                                                                                                                                             |     | 0         |
| 17 | Title is missing!. , 2020, 18, e3000656.                                                                                                                                                                                             |     | 0         |
|    |                                                                                                                                                                                                                                      |     |           |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Title is missing!. , 2020, 18, e3000656.                                                                                                                                                                                                                     |     | Ο         |
| 20 | Title is missing!. , 2020, 18, e3000656.                                                                                                                                                                                                                     |     | 0         |
| 21 | Title is missing!. , 2020, 18, e3000656.                                                                                                                                                                                                                     |     | Ο         |
| 22 | Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16394-16403.                                                                     | 3.3 | 43        |
| 23 | Dynamic Structural Modeling Revealed That Nilotinib Inhibits Smoothened Signaling. Neurosurgery, 2019, 66, .                                                                                                                                                 | 0.6 | Ο         |
| 24 | Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Scientific Reports, 2019, 9, 15893.                                                                                                                                      | 1.6 | 18        |
| 25 | Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent<br>medulloblastoma. PLoS ONE, 2019, 14, e0214901.                                                                                                                  | 1.1 | 4         |
| 26 | 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2.<br>Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action.<br>Journal of Medicinal Chemistry, 2019, 62, 1817-1836. | 2.9 | 17        |
| 27 | 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 1.<br>Identification of an Allosteric Binding Site. Journal of Medicinal Chemistry, 2019, 62, 1803-1816.                                                           | 2.9 | 25        |
| 28 | Strategies for Network GWAS Evaluated Using Classroom Crowd Science. Cell Systems, 2019, 8, 275-280.                                                                                                                                                         | 2.9 | 5         |
| 29 | The Angiotensin Receptor Blocker Losartan Suppresses Growth of Pulmonary Metastases via<br>AT1R-Independent Inhibition of CCR2 Signaling and Monocyte Recruitment. Journal of Immunology,<br>2019, 202, 3087-3102.                                           | 0.4 | 48        |
| 30 | CCR2-Mediated Uptake of Constitutively Produced CCL2: A Mechanism for Regulating Chemokine Levels<br>in the Blood. Journal of Immunology, 2019, 203, 3157-3165.                                                                                              | 0.4 | 19        |
| 31 | Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Science Signaling, 2018, 11, .                                                                                                      | 1.6 | 26        |
| 32 | Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms.<br>Molecular Pharmacology, 2018, 93, 619-630.                                                                                                                   | 1.0 | 20        |
| 33 | Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS<br>Pharmacology and Translational Science, 2018, 1, 96-109.                                                                                                       | 2.5 | 13        |
| 34 | Investigating Chemokine Receptor CCR2 Dynamics and Druggability by Ensemble Based Approaches.<br>Biophysical Journal, 2018, 114, 399a.                                                                                                                       | 0.2 | 0         |
| 35 | A Tyrosine Switch on NEDD4-2 E3 Ligase Transmits GPCR Inflammatory Signaling. Cell Reports, 2018, 24, 3312-3323.e5.                                                                                                                                          | 2.9 | 36        |
| 36 | Structural basis of ligand interaction with atypical chemokine receptor 3. Nature Communications, 2017, 8, 14135.                                                                                                                                            | 5.8 | 83        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity, 2017, 46, 1005-1017.e5.                | 6.6  | 148       |
| 38 | What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?. Annual Review of Biophysics, 2017, 46, 175-198.                                                                      | 4.5  | 81        |
| 39 | The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block. Cell<br>Cycle, 2017, 16, 607-612.                                                                    | 1.3  | 40        |
| 40 | Identifying ligands at orphan GPCRs: current status using structureâ€based approaches. British Journal of Pharmacology, 2016, 173, 2934-2951.                                                      | 2.7  | 70        |
| 41 | Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540, 458-461.                                                                                      | 13.7 | 220       |
| 42 | Disulfide Trapping for Modeling and Structure Determination of Receptor. Methods in Enzymology, 2016, 570, 389-420.                                                                                | 0.4  | 15        |
| 43 | Chemokines and their receptors: insights from molecular modeling and crystallography. Current Opinion in Pharmacology, 2016, 30, 27-37.                                                            | 1.7  | 35        |
| 44 | Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9928-9933.  | 3.3  | 96        |
| 45 | Crystal Structure of the Human Cannabinoid Receptor CB1. Cell, 2016, 167, 750-762.e14.                                                                                                             | 13.5 | 468       |
| 46 | Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell<br>Research, 2016, 26, 574-592.                                                                 | 5.7  | 85        |
| 47 | Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a<br>tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene, 2016, 35, 3771-3780. | 2.6  | 66        |
| 48 | AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. ELife, 2016, 5, .                                                           | 2.8  | 41        |
| 49 | Abstract A168: Towards an understanding of the structural basis of CXCR7 ligand binding and signaling. , 2016, , .                                                                                 |      | 0         |
| 50 | Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily. Membranes, 2015, 5, 646-663.                                                                                      | 1.4  | 42        |
| 51 | Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 2015, 347, 1117-1122.                                                                                | 6.0  | 325       |
| 52 | Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunology and Cell Biology, 2015, 93, 372-383.                                              | 1.0  | 162       |
| 53 | Structure-Based Predictions of Activity Cliffs. Journal of Chemical Information and Modeling, 2015, 55, 1062-1076.                                                                                 | 2.5  | 34        |
| 54 | Activation of Gαi at the Golgi by GIV/Girdin Imposes Finiteness in Arf1 Signaling. Developmental Cell, 2015, 33, 189-203.                                                                          | 3.1  | 46        |

IRINA KUFAREVA

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dual Targeting of the Chemokine Receptors CXCR4 and ACKR3 with Novel Engineered Chemokines.<br>Journal of Biological Chemistry, 2015, 290, 22385-22397.                                                                                      | 1.6 | 37        |
| 56 | Experiment-Guided Molecular Modeling of Protein–Protein Complexes Involving GPCRs. Methods in<br>Molecular Biology, 2015, 1335, 295-311.                                                                                                     | 0.4 | 11        |
| 57 | Abstract 2059: Novel roles for GNA13 and RHOA as tumor suppressor genes. , 2015, , .                                                                                                                                                         |     | 0         |
| 58 | A General Method for Site Specific Fluorescent Labeling of Recombinant Chemokines. PLoS ONE, 2014,<br>9, e81454.                                                                                                                             | 1.1 | 21        |
| 59 | Discovery of novel membrane binding structures and functions. Biochemistry and Cell Biology, 2014, 92, 555-563.                                                                                                                              | 0.9 | 46        |
| 60 | Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: Molecular modeling and experimental validation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5363-72. | 3.3 | 70        |
| 61 | Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via<br>GIV/Girdin. Molecular Biology of the Cell, 2014, 25, 3654-3671.                                                                           | 0.9 | 54        |
| 62 | PeptiSite: A structural database of peptide binding sites in 4D. Biochemical and Biophysical Research Communications, 2014, 445, 717-723.                                                                                                    | 1.0 | 13        |
| 63 | <i>In Silico</i> Analysis of the Conservation of Human Toxicity and Endocrine Disruption Targets in Aquatic Species. Environmental Science & amp; Technology, 2014, 48, 1964-1972.                                                           | 4.6 | 51        |
| 64 | Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. Topics in Medicinal Chemistry, 2014, , 41-85.                                                                     | 0.4 | 1         |
| 65 | Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges.<br>Structure, 2014, 22, 1120-1139.                                                                                                             | 1.6 | 149       |
| 66 | Identification of Novel Serotonin Transporter Compounds by Virtual Screening. Journal of Chemical<br>Information and Modeling, 2014, 54, 933-943.                                                                                            | 2.5 | 32        |
| 67 | In Silico Identification and Pharmacological Evaluation of Novel Endocrine Disrupting Chemicals That<br>Act via the Ligand-Binding Domain of theÂEstrogen Receptor α. Toxicological Sciences, 2014, 141, 188-197.                            | 1.4 | 36        |
| 68 | Abstract 4202: Deciphering the effects of GNA13 mutations in B-cell lymphomas. , 2014, , .                                                                                                                                                   |     | 0         |
| 69 | Homology modeling and ligand docking of Mitogen-activated protein kinase-activated protein kinase 5<br>(MK5). Theoretical Biology and Medical Modelling, 2013, 10, 56.                                                                       | 2.1 | 13        |
| 70 | Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex. Science, 2013, 341, 1387-1390.                                                                                                                               | 6.0 | 606       |
| 71 | Quantum mechanics approaches to drug research in the era of structural chemogenomics.<br>International Journal of Quantum Chemistry, 2013, 113, 1669-1675.                                                                                   | 1.0 | 14        |
| 72 | Sulfopeptide Probes of the CXCR4/CXCL12 Interface Reveal Oligomer-Specific Contacts and Chemokine<br>Allostery. ACS Chemical Biology, 2013, 8, 1955-1963.                                                                                    | 1.6 | 51        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nature Reviews Cancer, 2013, 13, 412-424.                                                                                     | 12.8 | 462       |
| 74 | Viral Infection Controlled by a Calcium-Dependent Lipid-Binding Module in ALIX. Developmental Cell, 2013, 25, 364-373.                                                                                                   | 3.1  | 107       |
| 75 | Pivotal role of P450–P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochemical<br>Journal, 2013, 453, 219-230.                                                                                    | 1.7  | 60        |
| 76 | Molecular Mechanisms Deployed by Virally Encoded G Protein–Coupled Receptors in Human Diseases.<br>Annual Review of Pharmacology and Toxicology, 2013, 53, 331-354.                                                      | 4.2  | 55        |
| 77 | A Structural Snapshot of CYP2B4 in Complex with Paroxetine Provides Insights into Ligand Binding<br>and Clusters of Conformational States. Journal of Pharmacology and Experimental Therapeutics, 2013,<br>346, 113-120. | 1.3  | 13        |
| 78 | Synthesis, Antidepressant Evaluation and Docking Studies of Longâ€Chain Alkylnitroquipazines as<br>Serotonin Transporter Inhibitors. Chemical Biology and Drug Design, 2013, 81, 695-706.                                | 1.5  | 10        |
| 79 | Lapatinib-Binding Protein Kinases in the African Trypanosome: Identification of Cellular Targets for<br>Kinase-Directed Chemical Scaffolds. PLoS ONE, 2013, 8, e56150.                                                   | 1.1  | 36        |
| 80 | A Novel Approach to Quantify G-Protein-Coupled Receptor Dimerization Equilibrium Using<br>Bioluminescence Resonance Energy Transfer. Methods in Molecular Biology, 2013, 1013, 93-127.                                   | 0.4  | 15        |
| 81 | Pocketome: an encyclopedia of small-molecule binding sites in 4D. Nucleic Acids Research, 2012, 40, D535-D540.                                                                                                           | 6.5  | 149       |
| 82 | Compound Activity Prediction Using Models of Binding Pockets or Ligand Properties in 3D. Current<br>Topics in Medicinal Chemistry, 2012, 12, 1869-1882.                                                                  | 1.0  | 42        |
| 83 | Docking, Screening and Selectivity Prediction for Small-molecule Nuclear Receptor Modulators. RSC<br>Drug Discovery Series, 2012, , 84-109.                                                                              | 0.2  | 4         |
| 84 | Novel cGMP Efflux Inhibitors Identified by Virtual Ligand Screening (VLS) and Confirmed by Experimental Studies. Journal of Medicinal Chemistry, 2012, 55, 3049-3057.                                                    | 2.9  | 25        |
| 85 | Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. European Journal of Medicinal Chemistry, 2012, 47, 24-37.                                                         | 2.6  | 26        |
| 86 | Synthesis, inÂvitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues,<br>as potential serotonin transporter inhibitors. European Journal of Medicinal Chemistry, 2012, 49,<br>200-210.  | 2.6  | 5         |
| 87 | Structure based prediction of subtype-selectivity for adenosine receptor antagonists.<br>Neuropharmacology, 2011, 60, 108-115.                                                                                           | 2.0  | 81        |
| 88 | Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock 2010 Assessment.<br>Structure, 2011, 19, 1108-1126.                                                                                         | 1.6  | 269       |
| 89 | Methods of Protein Structure Comparison. Methods in Molecular Biology, 2011, 857, 231-257.                                                                                                                               | 0.4  | 378       |
| 90 | Tyrosine Phosphorylation of the Gα-Interacting Protein GIV Promotes Activation of Phosphoinositide<br>3-Kinase During Cell Migration. Science Signaling, 2011, 4, ra64.                                                  | 1.6  | 78        |

IRINA KUFAREVA

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Structure-Based Discovery of Novel Chemotypes for Adenosine A <sub>2A</sub> Receptor Antagonists.<br>Journal of Medicinal Chemistry, 2010, 53, 1799-1809.                                                                          | 2.9 | 231       |
| 92  | Improved docking, screening and selectivity prediction for small molecule nuclear receptor<br>modulators using conformational ensembles. Journal of Computer-Aided Molecular Design, 2010, 24,<br>459-471.                         | 1.3 | 59        |
| 93  | Four-Dimensional Docking: A Fast and Accurate Account of Discrete Receptor Flexibility in Ligand<br>Docking. Journal of Medicinal Chemistry, 2009, 52, 397-406.                                                                    | 2.9 | 172       |
| 94  | The Flexible Pocketome Engine for Structural Chemogenomics. Methods in Molecular Biology, 2009, 575, 249-279.                                                                                                                      | 0.4 | 55        |
| 95  | Predicting Molecular Interactions in Structural Proteomics. , 2009, , 185-209.                                                                                                                                                     |     | 3         |
| 96  | A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Journal of Computer-Aided Molecular Design, 2008, 22, 311-325.                                                              | 1.3 | 74        |
| 97  | Type-II Kinase Inhibitor Docking, Screening, and Profiling Using Modified Structures of Active Kinase<br>States. Journal of Medicinal Chemistry, 2008, 51, 7921-7932.                                                              | 2.9 | 162       |
| 98  | Optimization of High Throughput Virtual Screening by Combining Shape-Matching and Docking<br>Methods. Journal of Chemical Information and Modeling, 2008, 48, 489-497.                                                             | 2.5 | 46        |
| 99  | 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T<br>cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2007,<br>104, 18619-18624. | 3.3 | 161       |
| 100 | Sirtuin 2 Inhibitors Rescue Â-Synuclein-Mediated Toxicity in Models of Parkinson's Disease. Science, 2007, 317, 516-519.                                                                                                           | 6.0 | 995       |
| 101 | PIER: Protein interface recognition for structural proteomics. Proteins: Structure, Function and Bioinformatics, 2007, 67, 400-417.                                                                                                | 1.5 | 104       |
|     |                                                                                                                                                                                                                                    |     |           |

102 Equivalence Checking of Arithmetic Circuits. , 2004, , 77-123.

0