List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1956191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 2017, 168, 94-116.	3.4	940
2	High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018, 209, 227-239.	4.6	448
3	The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China. Science of the Total Environment, 2016, 542, 360-371.	3.9	441
4	High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 2020, 3, 564-570.	11.5	391
5	Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews, 2018, 81, 2144-2159.	8.2	381
6	Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China's provinces. Applied Energy, 2014, 136, 738-749.	5.1	371
7	Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecological Indicators, 2014, 45, 171-183.	2.6	349
8	Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China's megacities. Applied Energy, 2017, 185, 189-200.	5.1	306
9	The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. Journal of Cleaner Production, 2017, 142, 1800-1809.	4.6	287
10	Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecological Indicators, 2017, 77, 185-193.	2.6	281
11	The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM _{2.5}) Concentrations in China. Environmental Science & Technology, 2016, 50, 11452-11459.	4.6	280
12	Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Applied Energy, 2015, 158, 519-531.	5.1	272
13	Does foreign direct investment affect environmental pollution in China's cities? A spatial econometric perspective. Science of the Total Environment, 2018, 613-614, 521-529.	3.9	222
14	Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecological Indicators, 2015, 49, 121-131.	2.6	220
15	China's city-level energy-related CO 2 emissions: Spatiotemporal patterns and driving forces. Applied Energy, 2017, 200, 204-214.	5.1	216
16	Understanding the relation between urbanization and the eco-environment in China's Yangtze River Delta using an improved EKC model and coupling analysis. Science of the Total Environment, 2016, 571, 862-875.	3.9	211
17	A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Annals of the American Association of Geographers, 2017, 107, 1040-1059.	1.5	206
18	Spatiotemporal variations of energy-related CO 2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renewable and Sustainable Energy Reviews, 2016, 55, 505-515.	8.2	201

#	Article	IF	CITATIONS
19	Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nature Communications, 2019, 10, 5558.	5.8	198
20	Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecological Indicators, 2018, 86, 67-80.	2.6	195
21	Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique. Science of the Total Environment, 2018, 619-620, 436-445.	3.9	189
22	Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model. Applied Energy, 2019, 235, 95-105.	5.1	183
23	Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach. Renewable and Sustainable Energy Reviews, 2019, 103, 140-150.	8.2	179
24	How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. Journal of Cleaner Production, 2021, 307, 127133.	4.6	176
25	Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Applied Energy, 2018, 230, 94-105.	5.1	155
26	Examining the influences of urbanization on carbon dioxide emissions in the Yangtze River Delta, China: Kuznets curve relationship. Science of the Total Environment, 2019, 675, 472-482.	3.9	148
27	The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis. Applied Energy, 2018, 228, 1693-1706.	5.1	144
28	Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province. Applied Energy, 2019, 254, 113650.	5.1	137
29	Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. Journal of Cleaner Production, 2020, 243, 118615.	4.6	132
30	Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Applied Energy, 2016, 184, 714-726.	5.1	126
31	Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Science of the Total Environment, 2016, 545-546, 609-620.	3.9	124
32	Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives. Applied Energy, 2019, 236, 163-171.	5.1	114
33	The Relationship between Urbanization, Economic Growth and Energy Consumption in China: An Econometric Perspective Analysis. Sustainability, 2015, 7, 5609-5627.	1.6	113
34	Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta, China. Cities, 2019, 85, 117-129.	2.7	111
35	The coupling curve between urbanization and the eco-environment: China's urban agglomeration as a case study. Ecological Indicators, 2021, 130, 108107.	2.6	111
36	Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Applied Geography, 2017, 79, 26-36.	1.7	107

#	Article	IF	CITATIONS
37	CO 2 , economic growth, and energy consumption in China's provinces: Investigating the spatiotemporal and econometric characteristics of China's CO 2 emissions. Ecological Indicators, 2016, 69, 184-195.	2.6	104
38	Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces. Environmental Science & Technology, 2016, 50, 2217-2227.	4.6	102
39	The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis. Renewable and Sustainable Energy Reviews, 2021, 149, 111328.	8.2	101
40	Estimating spatiotemporal variations of city-level energy-related CO2 emissions: An improved disaggregating model based on vegetation adjusted nighttime light data. Journal of Cleaner Production, 2018, 177, 101-114.	4.6	94
41	Does migration of pollution-intensive industries impact environmental efficiency? Evidence supporting "Pollution Haven Hypothesis― Journal of Environmental Management, 2019, 242, 142-152.	3.8	94
42	Stronger Contributions of Urbanization to Heat Wave Trends in Wet Climates. Geophysical Research Letters, 2018, 45, 11,310.	1.5	93
43	Examining the effects of socioeconomic development on China's carbon productivity: A panel data analysis. Science of the Total Environment, 2019, 659, 681-690.	3.9	92
44	The spatial differentiation of the coupling relationship between urbanization and the eco-environment in countries globally: A comprehensive assessment. Ecological Modelling, 2017, 360, 313-327.	1.2	90
45	Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environmental Science & Technology, 2019, 53, 6834-6844.	4.6	90
46	Energy relations between China and the countries along the Belt and Road: An analysis of the distribution of energy resources and interdependence relationships. Renewable and Sustainable Energy Reviews, 2019, 107, 133-144.	8.2	85
47	Spatial spillover effect and driving forces of carbon emission intensity at the city level in China. Journal of Chinese Geography, 2019, 29, 231-252.	1.5	85
48	Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China. Journal of Chinese Geography, 2014, 24, 612-630.	1.5	84
49	The effect of natural and anthropogenic factors on PM2.5: Empirical evidence from Chinese cities with different income levels. Science of the Total Environment, 2019, 653, 157-167.	3.9	83
50	Spatial variations of PM2.5 in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. Journal of Cleaner Production, 2018, 203, 143-152.	4.6	82
51	Evaluating the energy-environment efficiency and its determinants in Guangdong using a slack-based measure with environmental undesirable outputs and panel data model. Science of the Total Environment, 2019, 663, 878-888.	3.9	77
52	The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: A panel study of 113 Chinese cities. Science of the Total Environment, 2017, 584-585, 318-328.	3.9	75
53	Examining the determinants and the spatial nexus of city-level CO2 emissions in China: A dynamic spatial panel analysis of China's cities. Journal of Cleaner Production, 2018, 171, 917-926.	4.6	74
54	Identifying the socioeconomic determinants of population exposure to particulate matter (PM2.5) in China using geographically weighted regression modeling. Environmental Pollution, 2018, 241, 494-503.	3.7	71

SHAOJIAN WANG

#	Article	IF	CITATIONS
55	Examining the spatially varying effects of factors on PM2.5 concentrations in Chinese cities using geographically weighted regression modeling. Environmental Pollution, 2019, 248, 792-803.	3.7	70
56	Examining the Impacts of Urban Form on Air Pollution in Developing Countries: A Case Study of China's Megacities. International Journal of Environmental Research and Public Health, 2018, 15, 1565.	1.2	68
57	Socioeconomic driving forces and scenario simulation of CO2 emissions for a fast-developing region in China. Journal of Cleaner Production, 2019, 216, 217-229.	4.6	66
58	Does modernization affect carbon dioxide emissions? A panel data analysis. Science of the Total Environment, 2019, 663, 426-435.	3.9	66
59	Dynamics, differences, influencing factors of eco-efficiency in China: A spatiotemporal perspective analysis. Journal of Environmental Management, 2020, 264, 110442.	3.8	66
60	China's municipal public infrastructure: Estimating construction levels and investment efficiency using the entropy method and a DEA model. Habitat International, 2017, 64, 59-70.	2.3	65
61	The varying driving forces of urban land expansion in China: Insights from a spatial-temporal analysis. Science of the Total Environment, 2021, 766, 142591.	3.9	62
62	Examining the socioeconomic determinants of CO2 emissions in China: A historical and prospective analysis. Resources, Conservation and Recycling, 2018, 130, 1-11.	5.3	57
63	The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. Journal of Chinese Geography, 2022, 32, 44-64.	1.5	56
64	Dose urban landscape pattern affect CO2 emission efficiency? Empirical evidence from megacities in China. Journal of Cleaner Production, 2018, 203, 164-178.	4.6	53
65	Factors of ecosystem service values in a fast-developing region in China: Insights from the joint impacts of human activities and natural conditions. Journal of Cleaner Production, 2021, 297, 126588.	4.6	53
66	Income distribution and environmental quality in China: A spatial econometric perspective. Journal of Cleaner Production, 2018, 205, 14-26.	4.6	52
67	Investigating the differentiated impacts of socioeconomic factors and urban forms on CO2 emissions: Empirical evidence from Chinese cities of different developmental levels. Journal of Cleaner Production, 2019, 226, 601-614.	4.6	48
68	Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China. Journal of Chinese Geography, 2018, 28, 495-513.	1.5	44
69	How does urbanization affect the carbon intensity of human well-being? A global assessment. Applied Energy, 2022, 312, 118798.	5.1	44
70	Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures. Applied Energy, 2019, 238, 1163-1178.	5.1	43
71	How global value chain participation affects China's energy intensity. Journal of Environmental Management, 2020, 260, 110041.	3.8	41
72	Spatiotemporal evolution of urban carbon emission performance in China and prediction of future trends. Journal of Chinese Geography, 2020, 30, 757-774.	1.5	40

#	Article	IF	CITATIONS
73	Does the path of technological progress matter in mitigating China's PM2.5 concentrations? Evidence from three urban agglomerations in China. Environmental Pollution, 2019, 254, 113012.	3.7	39
74	Spatiotemporal Variations and Driving Factors of Air Pollution in China. International Journal of Environmental Research and Public Health, 2017, 14, 1538.	1.2	37
75	Emission reduction target, complexity and industrial performance. Journal of Environmental Management, 2020, 260, 110148.	3.8	37
76	Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis. Applied Energy, 2019, 254, 113720.	5.1	36
77	The varying driving forces of PM2.5 concentrations in Chinese cities: Insights from a geographically and temporally weighted regression model. Environment International, 2020, 145, 106168.	4.8	36
78	Examining the effects of education level inequality on energy consumption: Evidence from Guangdong Province. Journal of Environmental Management, 2020, 269, 110761.	3.8	34
79	Polycentric and dispersed population distribution increases PM2.5 concentrations: Evidence from 286 Chinese cities, 2001–2016. Journal of Cleaner Production, 2020, 248, 119202.	4.6	32
80	Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data. PLoS ONE, 2015, 10, e0138666.	1.1	29
81	Estimating the dynamic effects of socioeconomic development on industrial SO2 emissions in Chinese cities using a DPSIR causal framework. Resources, Conservation and Recycling, 2019, 150, 104450.	5.3	29
82	How do urban spatial structures evolution in the high-speed rail era? Case study of Yangtze River Delta, China. Habitat International, 2019, 93, 102051.	2.3	29
83	Structural contribution and scenario simulation of highway passenger transit carbon emissions in the Beijing-Tianjin-Hebei metropolitan region, China. Resources, Conservation and Recycling, 2019, 140, 209-215.	5.3	27
84	Decarbonizing China's Urban Agglomerations. Annals of the American Association of Geographers, 2019, 109, 266-285.	1.5	26
85	Global protected areas boost the carbon sequestration capacity: Evidences from econometric causal analysis. Science of the Total Environment, 2020, 715, 137001.	3.9	23
86	The dynamic effect of environmental regulation on firms' energy consumption behavior-Evidence from China's industrial firms. Renewable and Sustainable Energy Reviews, 2022, 156, 111966.	8.2	21
87	Are the temporal variation and spatial variation of ambient SO2 concentrations determined by different factors?. Journal of Cleaner Production, 2017, 167, 824-836.	4.6	20
88	Spatial Heterogeneity in the Determinants of Urban Form: An Analysis of Chinese Cities with a GWR Approach. Sustainability, 2019, 11, 479.	1.6	20
89	Effect of land prices on the spatial differentiation of housing prices: Evidence from cross-county analyses in China. Journal of Chinese Geography, 2018, 28, 725-740.	1.5	19
90	A global North-South division line for portraying urban development. IScience, 2021, 24, 102729.	1.9	17

SHAOJIAN WANG

#	Article	IF	CITATIONS
91	Quantifying embodied cultivated land-use change and its socioeconomic driving forces in China. Applied Geography, 2021, 137, 102601.	1.7	16
92	Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities. Land Use Policy, 2022, 114, 105920.	2.5	16
93	Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework. Structural Change and Economic Dynamics, 2018, 47, 18-27.	2.1	15
94	Spatiotemporal patterns of global carbon intensities and their driving forces. Science of the Total Environment, 2022, 818, 151690.	3.9	14
95	Impact of urban landscape and environmental externalities on spatial differentiation of housing prices in Yangzhou City. Journal of Chinese Geography, 2015, 25, 1122-1136.	1.5	13
96	Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO2 Emissions: A Structural Equation Modeling Approach. Sustainability, 2018, 10, 1372.	1.6	9
97	Development zones and urban economic performance in China: Direct impact and channel effects. Growth and Change, 2022, 53, 1762-1782.	1.3	5
98	The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015. Atmosphere, 2022, 13, 963.	1.0	5
99	Does Migrant Status and Household Registration Matter? Examining the Effects of City Size on Self-Rated Health. Sustainability, 2018, 10, 2204.	1.6	3
100	Development Zones and Their Surrounding Host Cities in China: Isolation and Mutually Beneficial Interactions. Land, 2022, 11, 20.	1.2	3
101	Which Factors Influence the Regional Difference of Urban–Rural Residential CO2 Emissions? A Case Study by Cross-Regional Panel Analysis in China. Land, 2022, 11, 632.	1.2	3
102	Consumption-based carbon intensity of human well-being and its socioeconomic drivers in countries globally. Journal of Cleaner Production, 2022, 366, 132886.	4.6	3