Xu Lanshu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1956159/publications.pdf

Version: 2024-02-01

		840776	839539
19	331	11	18
papers	citations	h-index	g-index
19	19	19	512
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: kinetics, equilibrium, and thermodynamics studies. Biomass Conversion and Biorefinery, 2022, 12, 3875-3885.	4.6	22
2	Fabrication of Pd Nanocubes@CdIF-8 catalysts for highly efficient electrocatalytic sensing of H2O2 and high-performance supercapacitor. Materials and Design, 2020, 186, 108267.	7.0	11
3	On the formation of cellulose-based carbon microspheres with Fe2O3 nanoparticle cores. Journal of Materials Science: Materials in Electronics, 2020, 31, 11038-11048.	2.2	2
4	Electrochemical performance enhancement of flexible graphene supercapacitor electrodes by carbon dots modification and NiCo2S4 electrodeposition. Journal of Alloys and Compounds, 2019, 809, 151802.	5.5	29
5	Corn Cob Lignin-based Porous Carbon Modified Reduced Graphene Oxide Film For Flexible Supercapacitor Electrode. Journal of Wood Chemistry and Technology, 2019, 39, 343-359.	1.7	17
6	Facile synthesis of metal @ carbon sphere/graphene film electrodes with enhanced energy density for flexible asymmetric all-solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2019, 847, 113199.	3.8	6
7	Highly Flexible and Durable Graphene Hybrid Film Electrode Modified with Aminated \hat{I}^2 -Cyclodextrin for Supercapacitor. Journal of the Electrochemical Society, 2019, 166, A1636-A1643.	2.9	3
8	Self-assembly design and synthesis of pulp fiber–graphene for flexible and high performance electrode based on polyacrylamide. New Journal of Chemistry, 2019, 43, 6394-6403.	2.8	3
9	Hydrophilic "bridge―tannins for stabilizing the metal selenides onto activated carbon for binder-free and ultralong-life asymmetric supercapacitors. New Journal of Chemistry, 2019, 43, 5592-5602.	2.8	5
10	Self-assembly of flexible graphene hydrogel electrode based on crosslinked pectin-cations. Carbohydrate Polymers, 2018, 195, 593-600.	10.2	16
11	Graphene Hydrogel Decorated with N, O Co-Doped Carbon Dots for Flexible Supercapacitor Electrodes. Journal of the Electrochemical Society, 2018, 165, A2217-A2224.	2.9	22
12	Graphene and activated carbon-wrapped and Co ₃ O ₄ -intercalated 3D sandwich nanostructure hybrid for high-performance supercapacitance. New Journal of Chemistry, 2018, 42, 10733-10740.	2.8	5
13	Tannic Acid-Decorated Spongy Graphene for Flexible and High Performance Supercapacitors. Journal of the Electrochemical Society, 2018, 165, A1706-A1712.	2.9	5
14	High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Scientific Reports, 2017, 7, 12857.	3.3	65
15	Synthesis and characterization of free-standing activated carbon/reduced graphene oxide film electrodes for flexible supercapacitors. RSC Advances, 2017, 7, 45066-45074.	3.6	27
16	Automated multi-filtration cleanup with nitrogen-enriched activated carbon material as pesticide multi-residue analysis method in representative crop commodities. Journal of Chromatography A, 2017, 1515, 62-68.	3.7	19
17	Hydrothermal fabrication of reduced graphene oxide/activated carbon/MnO2 hybrids with excellent electrochemical performance for supercapacitors. RSC Advances, 2017, 7, 39024-39033.	3.6	8
18	Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Advances, 2017, 7, 31342-31351.	3.6	55

Xu Lanshu

#	Article	IF	CITATIONS
19	Natural Organic Phytate Modified Graphene Hydrogel for Flexible Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A3614-A3619.	2.9	11