Stephen H Tsang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1955906/stephen-h-tsang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

342 6,728 papers citations

44 h-index 65 g-index

361 ext. papers

8,127 ext. citations

5.1 avg, IF

6.24 L-index

#	Paper	IF	Citations
342	Comparisons Among Optical Coherence Tomography and Fundus Autofluorescence Modalities as Measurements of Atrophy in ABCA4-Associated Disease <i>Translational Vision Science and Technology</i> , 2022 , 11, 36	3.3	
341	Late-stage rescue of visually guided behavior in the context of a significantly remodeled retinitis pigmentosa mouse model <i>Cellular and Molecular Life Sciences</i> , 2022 , 79, 148	10.3	
340	Rare and common variants in ROM1 and PRPH2 genes trans-modify Stargardt/ABCA4 disease <i>PLoS Genetics</i> , 2022 , 18, e1010129	6	
339	Expanding the phenotype of TTLL5-associated retinal dystrophy: a case series <i>Orphanet Journal of Rare Diseases</i> , 2022 , 17, 146	4.2	1
338	Multimodal imaging reveals retinoschisis masquerading as retinal detachment in patients with choroideremia <i>American Journal of Ophthalmology Case Reports</i> , 2022 , 26, 101543	1.3	
337	Clinical and genetic findings in Italian patients with sector retinitis pigmentosa. <i>Molecular Vision</i> , 2021 , 27, 78-94	2.3	O
336	Phase transition specified by a binary code patterns the vertebrate eye cup. <i>Science Advances</i> , 2021 , 7, eabj9846	14.3	3
335	Telegenetics for inherited retinal diseases in the COVID-19 environment. <i>International Journal of Retina and Vitreous</i> , 2021 , 7, 25	2.9	1
334	Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. <i>Journal of Clinical Investigation</i> , 2021 , 131,	15.9	6
333	Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. <i>Human Molecular Genetics</i> , 2021 , 30, 1293-1304	5.6	5
332	A novel KCNV2 mutation in a patient taking hydroxychloroquine associated with cone dystrophy with supernormal rod response. <i>Ophthalmic Genetics</i> , 2021 , 42, 458-463	1.2	O
331	CNGB1-related rod-cone dystrophy: A mutation review and update. <i>Human Mutation</i> , 2021 , 42, 641-666	4.7	6
330	Impaired cholesterol efflux in retinal pigment epithelium of individuals with juvenile macular degeneration. <i>American Journal of Human Genetics</i> , 2021 , 108, 903-918	11	3
329	Overcoming translational barriers in modeling macular degenerations. <i>Cell Stem Cell</i> , 2021 , 28, 781-783	18	O
328	Distinct expression requirements and rescue strategies for loss- and gain-of-function mutations. <i>ELife</i> , 2021 , 10,	8.9	2
327	Reply. <i>Ophthalmology Retina</i> , 2021 , 5, e7-e8	3.8	
326	Shared Features in Retinal Disorders With Involvement of Retinal Pigment Epithelium 2021 , 62, 15		1

(2020-2021)

325	Stage-dependent choriocapillaris impairment in Best vitelliform macular dystrophy characterized by optical coherence tomography angiography. <i>Scientific Reports</i> , 2021 , 11, 14300	4.9	1
324	Expanding the clinical phenotype in patients with disease causing variants associated with atypical Usher syndrome. <i>Ophthalmic Genetics</i> , 2021 , 42, 664-673	1.2	5
323	CHORIORETINAL CHANGES IN A GENETICALLY CONFIRMED CASE OF BOUCHER-NEUHÜSER SYNDROME. <i>Retinal Cases and Brief Reports</i> , 2021 , 15, 179-184	1.1	7
322	Whole-Exome Sequencing of Patients With Posterior Segment Uveitis. <i>American Journal of Ophthalmology</i> , 2021 , 221, 246-259	4.9	3
321	Retinal pigment epithelium lipid metabolic demands and therapeutic restoration. <i>Taiwan Journal of Ophthalmology</i> , 2021 , 11, 216-220	1.4	
320	Retinal Pigment Epithelium Atrophy in Recessive Stargardt Disease as Measured by Short-Wavelength and Near-Infrared Autofluorescence. <i>Translational Vision Science and Technology</i> , 2021 , 10, 3	3.3	4
319	Nutrigenetic reprogramming of oxidative stress. <i>Taiwan Journal of Ophthalmology</i> , 2021 , 11, 207-215	1.4	1
318	Central serous chorioretinopathy treatment with a systemic PDE5 and PDE6 inhibitor (sildenafil). <i>American Journal of Ophthalmology Case Reports</i> , 2021 , 21, 100998	1.3	1
317	PROGRESSION OF SCOTOPIC SINGLE-FLASH ELECTRORETINOGRAPHY IN THE STAGES OF CAPN5 VITREORETINOPATHY. <i>Retinal Cases and Brief Reports</i> , 2021 , 15, 473-478	1.1	4
316	Gene therapy for inherited retinal diseases. <i>Annals of Translational Medicine</i> , 2021 , 9, 1278	3.2	5
315	Precision Medicine Trials in Retinal Degenerations. <i>Annual Review of Vision Science</i> , 2021 , 7, 851-865	8.2	1
314	Stickler Syndrome Genotype (COL2A1 mutation) with Retinitis Pigmentosa Phenotype. <i>Ophthalmology Retina</i> , 2020 , 4, 522	3.8	2
313	Sequential multiple retinal vein occlusions and transient ischemic attack in MTHFR polymorphism and protein S deficiency. <i>Molecular Genetics & Enomic Medicine</i> , 2020 , 8, e1273	2.3	2
312	PKM2 ablation enhanced retinal function and survival in a preclinical model of retinitis pigmentosa. <i>Mammalian Genome</i> , 2020 , 31, 77-85	3.2	4
311	Phenotypic variance in Calpain-5 retinal degeneration. <i>American Journal of Ophthalmology Case Reports</i> , 2020 , 18, 100627	1.3	3
310	Optical coherence tomography in the evaluation of retinitis pigmentosa. <i>Ophthalmic Genetics</i> , 2020 , 41, 413-419	1.2	1
309	Stargardt Juvenile Macular Degeneration. New England Journal of Medicine, 2020, 382, 2353	59.2	
308	Quasidominance in autosomal recessive -Leber congenital amaurosis. <i>Ophthalmic Genetics</i> , 2020 , 41, 198-200	1.2	

307	Phenotypic expansion of autosomal dominant retinitis pigmentosa associated with the D477G mutation in. <i>Journal of Physical Education and Sports Management</i> , 2020 , 6,	2.8	7
306	Prospective Impact of Sildenafil on Chronic cEntral Serous Chorioretinopathy: PISCES Trial. <i>Ophthalmology Retina</i> , 2020 , 4, 1119-1123	3.8	6
305	Short-Wavelength and Near-Infrared Autofluorescence in Patients with Deficiencies of the Visual Cycle and Phototransduction. <i>Scientific Reports</i> , 2020 , 10, 8998	4.9	3
304	Metabolite therapy guided by liquid biopsy proteomics delays retinal neurodegeneration. <i>EBioMedicine</i> , 2020 , 52, 102636	8.8	15
303	Disease asymmetry and hyperautofluorescent ring shape in retinitis pigmentosa patients. <i>Scientific Reports</i> , 2020 , 10, 3364	4.9	1
302	Progressive RPE atrophy and photoreceptor death in -associated autosomal recessive retinitis pigmentosa. <i>Ophthalmic Genetics</i> , 2020 , 41, 26-30	1.2	2
301	Inhibition of Ca channel surface expression by mutant bestrophin-1 in RPE cells. <i>FASEB Journal</i> , 2020 , 34, 4055-4071	0.9	6
300	Comparative Analysis of Functional and Structural Decline in Retinitis Pigmentosas. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
299	Multiexon deletion alleles of ATF6 linked to achromatopsia. JCI Insight, 2020, 5,	9.9	3
298	Precision metabolome reprogramming for imprecision therapeutics in retinitis pigmentosa. <i>Journal of Clinical Investigation</i> , 2020 , 130, 3971-3973	15.9	5
297	Fundoscopy-directed genetic testing to re-evaluate negative whole exome sequencing results. <i>Orphanet Journal of Rare Diseases</i> , 2020 , 15, 32	4.2	3
296	Optical Gap Biomarker in Cone-Dominant Retinal Dystrophy. <i>American Journal of Ophthalmology</i> , 2020 , 218, 40-53	4.9	2
295	Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies. <i>American Journal of Ophthalmology</i> , 2020 , 217, 252-260	4.9	2
294	Effects of deficiency in the -encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. <i>Journal of Biological Chemistry</i> , 2020 , 295, 6767-6780	5.4	15
293	Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. <i>Molecular Therapy</i> , 2020 , 28, 2139-2149	11.7	8
292	Retinal Manifestations of Mitochondrial Oxidative Phosphorylation Disorders 2020 , 61, 12		3
291	Compound heterozygous inheritance of two novel COQ2 variants results in familial coenzyme Q deficiency. <i>Orphanet Journal of Rare Diseases</i> , 2020 , 15, 320	4.2	2
290	Treatment-Emergent Adverse Events in Gene Therapy Trials for Inherited Retinal Diseases: A Narrative Review. <i>Ophthalmology and Therapy</i> , 2020 , 9, 709-724	5	12

289	Quantitative Autofluorescence Following Gene Therapy With Voretigene Neparvovec. <i>JAMA Ophthalmology</i> , 2020 , 138, 919-921	3.9	4
288	Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. <i>Cell</i> , 2020 , 183, 1650-166	45 6 .125	75
287	Dark noise and retinal degeneration from D190N-rhodopsin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 23033-23043	11.5	2
286	Quantitative Fundus Autofluorescence in HCQ Retinopathy 2020 , 61, 41		4
285	A mutation in causing pigmented paravenous retinochoroidal atrophy. <i>European Journal of Ophthalmology</i> , 2020 , 1120672120957599	1.9	
284	Presumed Chloroquine Retinopathy With Short-term Therapy for Glioblastoma Multiforme. <i>JAMA Ophthalmology</i> , 2020 , 138, 1215-1217	3.9	1
283	Spectral-Domain Optical Coherence Tomography Is More Sensitive for Hydroxychloroquine-Related Structural Abnormalities Than Short-Wavelength and Near-Infrared Autofluorescence. <i>Translational Vision Science and Technology</i> , 2020 , 9, 8	3.3	3
282	Novel REEP6 gene mutation associated with autosomal recessive retinitis pigmentosa. <i>Documenta Ophthalmologica</i> , 2020 , 140, 67-75	2.2	4
281	Progressive Choriocapillaris Impairment in ABCA4 Maculopathy Is Secondary to Retinal Pigment Epithelium Atrophy 2020 , 61, 13		3
280	Perspectives on Gene Therapy: Choroideremia Represents a Challenging Model for the Treatment of Other Inherited Retinal Degenerations. <i>Translational Vision Science and Technology</i> , 2020 , 9, 17	3.3	6
279	HMGB1 and Caveolin-1 related to RPE cell senescence in age-related macular degeneration. <i>Aging</i> , 2019 , 11, 4323-4337	5.6	10
278	CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. <i>Scientific Reports</i> , 2019 , 9, 12247	4.9	9
277	Hypoxic drive caused type 3 neovascularization in a preclinical model of exudative age-related macular degeneration. <i>Human Molecular Genetics</i> , 2019 , 28, 3475-3485	5.6	5
276	Distinct Imprinting Signatures and Biased Differentiation of Human Androgenetic and Parthenogenetic Embryonic Stem Cells. <i>Cell Stem Cell</i> , 2019 , 25, 419-432.e9	18	14
275	Modification of the disease phenotype by a mutation in. <i>Ophthalmic Genetics</i> , 2019 , 40, 369-375	1.2	9
274	Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. <i>Graefels Archive for Clinical and Experimental Ophthalmology</i> , 2019 , 257, 725-731	3.8	13
273	VCAN Canonical Splice Site Mutation is Associated With Vitreoretinal Degeneration and Disrupts an MMP Proteolytic Site 2019 , 60, 282-293		7
272	Proteomic insight into the pathogenesis of CAPN5-vitreoretinopathy. <i>Scientific Reports</i> , 2019 , 9, 7608	4.9	5

271	Spectrum of Disease Severity and Phenotype in Choroideremia Carriers. <i>American Journal of Ophthalmology</i> , 2019 , 207, 77-86	4.9	11
270	Multimodal Imaging in Best Vitelliform Macular Dystrophy 2019 , 60, 2012-2022		14
269	Correlation between B-scan optical coherence tomography, en face thickness map ring and hyperautofluorescent ring in retinitis pigmentosa patients. <i>Graefeks Archive for Clinical and Experimental Ophthalmology</i> , 2019 , 257, 1601-1609	3.8	О
268	Multi-platform imaging in ABCA4-Associated Disease. <i>Scientific Reports</i> , 2019 , 9, 6436	4.9	12
267	Therapeutic Window for Phosphodiesterase 6-Related Retinitis Pigmentosa. <i>JAMA Ophthalmology</i> , 2019 , 137, 679-680	3.9	3
266	Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho mutation. <i>Cellular and Molecular Life Sciences</i> , 2019 , 76, 3657-3665	10.3	5
265	A case-control collapsing analysis identifies retinal dystrophy genes associated with ophthalmic disease in patients with no pathogenic ABCA4 variants. <i>Genetics in Medicine</i> , 2019 , 21, 2336-2344	8.1	22
264	Non-paraneoplastic related retinopathy: clinical challenges and review. <i>Ophthalmic Genetics</i> , 2019 , 40, 293-297	1.2	1
263	Choroidal neovascularization in an adolescent with -associated retinal degeneration. <i>Ophthalmic Genetics</i> , 2019 , 40, 362-364	1.2	3
262	CAPN5 genetic inactivation phenotype supports therapeutic inhibition trials. <i>Human Mutation</i> , 2019 , 40, 2377-2392	4.7	5
261	Significant Vision Recovery after Early Treatment of Diffuse Unilateral Subacute Neuroretinitis. <i>Ophthalmology Retina</i> , 2019 , 3, 709	3.8	
260	Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa. <i>Orphanet Journal of Rare Diseases</i> , 2019 , 14, 187	4.2	8
259	Multimodal structural disease progression of retinitis pigmentosa according to mode of inheritance. <i>Scientific Reports</i> , 2019 , 9, 10712	4.9	13
258	Characterization of Retinal Structure in ATF6-Associated Achromatopsia 2019 , 60, 2631-2640		27
257	CRISPR Base Editing in Induced Pluripotent Stem Cells. <i>Methods in Molecular Biology</i> , 2019 , 2045, 337-3	3 46 4	7
256	Hyperautofluorescent Dots are Characteristic in Ceramide Kinase Like-associated Retinal Degeneration. <i>Scientific Reports</i> , 2019 , 9, 876	4.9	5
255	Investigation and Restoration of BEST1 Activity in Patient-derived RPEs with Dominant Mutations. <i>Scientific Reports</i> , 2019 , 9, 19026	4.9	15
254	Compound heterozygous novel frameshift variants in the gene result in Leber congenital amaurosis. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	4

(2018-2019)

253	Novel mutations in the 3-box motif of the BACK domain of KLHL7 associated with nonsyndromic autosomal dominant retinitis pigmentosa. <i>Orphanet Journal of Rare Diseases</i> , 2019 , 14, 295	4.2	2
252	VITAMIN A DEFICIENCY MONITORED BY QUANTITATIVE SHORT WAVELENGTH FUNDUS AUTOFLUORESCENCE IN A CASE OF BARIATRIC SURGERY. <i>Retinal Cases and Brief Reports</i> , 2019 ,	1.1	2
251	SCAPER-associated nonsyndromic autosomal recessive retinitis pigmentosa. <i>American Journal of Medical Genetics, Part A</i> , 2019 , 179, 312-316	2.5	6
250	Attenuation of Inherited and Acquired Retinal Degeneration Progression with Gene-based Techniques. <i>Molecular Diagnosis and Therapy</i> , 2019 , 23, 113-120	4.5	4
249	Viral Delivery Systems for CRISPR. <i>Viruses</i> , 2019 , 11,	6.2	92
248	Adeno-Associated Viral Gene Therapy for Inherited Retinal Disease. <i>Pharmaceutical Research</i> , 2019 , 36, 34	4.5	27
247	Macular spatial distribution of preserved autofluorescence in patients with choroideremia. <i>British Journal of Ophthalmology</i> , 2019 , 103, 933-937	5.5	11
246	Phenotypic expansion and progression of SPATA7-associated retinitis pigmentosa. <i>Documenta Ophthalmologica</i> , 2018 , 136, 125-133	2.2	2
245	A novel de novo mutation in a patient with inflammatory vitreoretinopathy, hearing loss, and developmental delay. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	16
244	The unfolded protein response regulator ATF6 promotes mesodermal differentiation. <i>Science Signaling</i> , 2018 , 11,	8.8	34
243	Autologous stem cell therapy for inherited and acquired retinal disease. <i>Regenerative Medicine</i> , 2018 , 13, 89-96	2.5	9
242	Personalized Proteomics in Proliferative Vitreoretinopathy Implicate Hematopoietic Cell Recruitment and mTOR as a Therapeutic Target. <i>American Journal of Ophthalmology</i> , 2018 , 186, 152-163	3 ^{4.9}	22
241	Reprogramming the metabolome rescues retinal degeneration. <i>Cellular and Molecular Life Sciences</i> , 2018 , 75, 1559-1566	10.3	11
240	Success of Gene Therapy in Late-Stage Treatment. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1074, 101-107	3.6	2
239	Treatment of Macular Degeneration with Sildenafil: Results of a Two-Year Trial. <i>Ophthalmologica</i> , 2018 , 240, 45-54	3.7	12
238	A Distinct Phenotype of Eyes Shut Homolog (EYS)-Retinitis Pigmentosa Is Associated With Variants Near the C-Terminus. <i>American Journal of Ophthalmology</i> , 2018 , 190, 99-112	4.9	14
237	CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. <i>Retinal Cases and Brief Reports</i> , 2018 , 12 Suppl 1, S67-S71	1.1	6
236	HYPERREFLECTIVE DEPOSITION IN THE BACKGROUND OF ADVANCED STARGARDT DISEASE. <i>Retina</i> , 2018 , 38, 2214-2219	3.6	5

235	The Rapid-Onset Chorioretinopathy Phenotype of ABCA4 Disease. <i>Ophthalmology</i> , 2018 , 125, 89-99	7.3	24
234	CRISPR/Cas9 genome surgery for retinal diseases. <i>Drug Discovery Today: Technologies</i> , 2018 , 28, 23-32	7.1	7
233	Deep Scleral Exposure: A Degenerative Outcome of End-Stage Stargardt Disease. <i>American Journal of Ophthalmology</i> , 2018 , 195, 16-25	4.9	8
232	Gene therapy in inherited retinal degenerative diseases, a review. <i>Ophthalmic Genetics</i> , 2018 , 39, 560-5	68.2	42
231	Genetic Rescue Reverses Microglial Activation in Preclinical Models of Retinitis Pigmentosa. <i>Molecular Therapy</i> , 2018 , 26, 1953-1964	11.7	10
230	Translation of CRISPR Genome Surgery to the Bedside for Retinal Diseases. <i>Frontiers in Cell and Developmental Biology</i> , 2018 , 6, 46	5.7	15
229	CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina, 2018, 38, 1443-1455	3.6	9
228	Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa. <i>Ophthalmology</i> , 2018 , 125, 1421-1430	7.3	65
227	HTRA1, an age-related macular degeneration protease, processes extracellular matrix proteins EFEMP1 and TSP1. <i>Aging Cell</i> , 2018 , 17, e12710	9.9	38
226	Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence 2018 , 59, 2459-2469		21
225	Quantitative Comparison of Near-infrared Versus Short-wave Autofluorescence Imaging in Monitoring Progression of Retinitis Pigmentosa. <i>American Journal of Ophthalmology</i> , 2018 , 194, 120-12	5 ^{4.9}	13
224	Rates of Bone Spicule Pigment Appearance in Patients With Retinitis Pigmentosa Sine Pigmento. <i>American Journal of Ophthalmology</i> , 2018 , 195, 176-180	4.9	9
223	Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. <i>PLoS ONE</i> , 2018 , 13, e0193250	3.7	24
222	Gene therapy and genome surgery in the retina. <i>Journal of Clinical Investigation</i> , 2018 , 128, 2177-2188	15.9	76
221	Patients and animal models of CNGI-deficient retinitis pigmentosa support gene augmentation approach. <i>Journal of Clinical Investigation</i> , 2018 , 128, 190-206	15.9	30
220	Blue Cone Monochromatism. Advances in Experimental Medicine and Biology, 2018, 1085, 65-66	3.6	1
219	Late-Onset Retinal Degeneration. Advances in Experimental Medicine and Biology, 2018, 1085, 115-116	3.6	
218	Retinal Histology and Anatomical Landmarks. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 3-5	3.6	1

(2018-2018)

217	Pigmented Paravenous Chorioretinal Atrophy (PPCRA). <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 111-113	3.6	1
216	Rubella Retinopathy. Advances in Experimental Medicine and Biology, 2018, 1085, 215-217	3.6	
215	Diffuse Unilateral Subacute Neuroretinitis (DUSN). <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 239-241	3.6	
214	Inborn Errors of Metabolism: Pseudoxanthoma Elasticum. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 187-189	3.6	1
213	Acute Zonal Occult Outer Retinopathy (AZOOR) and Related Diseases. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 233-237	3.6	1
212	Doyne Honeycomb Retinal Dystrophy (Malattia Leventinese, Autosomal Dominant Drusen). <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 97-102	3.6	2
211	X-linked Juvenile Retinoschisis. Advances in Experimental Medicine and Biology, 2018, 1085, 43-48	3.6	4
21 0	Progressive Cone Dystrophy and Cone-Rod Dystrophy (XL, AD, and AR). <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 53-60	3.6	10
209	Congenital Stationary Night Blindness. Advances in Experimental Medicine and Biology, 2018, 1085, 61-6	43.6	5
208	Pattern Dystrophy. Advances in Experimental Medicine and Biology, 2018, 1085, 91-96	3.6	5
207	North Carolina Macular Dystrophy. Advances in Experimental Medicine and Biology, 2018, 1085, 109-110	3.6	O
206	Enhanced S-Cone Syndrome (Goldmann-Favre Syndrome). <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 153-156	3.6	5
205	Best Vitelliform Macular Dystrophy. Advances in Experimental Medicine and Biology, 2018, 1085, 157-158	3.6	6
204	Mitochondrial Disorder: Kearns-Sayre Syndrome. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 161-162	3.6	12
203	Ciliopathy: Senior-Lilen Syndrome. Advances in Experimental Medicine and Biology, 2018, 1085, 175-178	3.6	10
202	Von Hippel-Lindau Disease. Advances in Experimental Medicine and Biology, 2018, 1085, 201-203	3.6	3
201	Electroretinography. Advances in Experimental Medicine and Biology, 2018, 1085, 17-20	3.6	8
200	A Practical Approach to Retinal Dystrophies. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 245-259	3.6	3

199	Electrooculography. Advances in Experimental Medicine and Biology, 2018, 1085, 21-22	3.6	1
198	CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa: A Brief Methodology. <i>Methods in Molecular Biology</i> , 2018 , 1715, 191-205	1.4	3
197	Stem cell therapy and regenerative medicine in RPE degenerative disease: advances and challenges. <i>Expert Review of Ophthalmology</i> , 2018 , 13, 321-327	1.5	
196	Caring for Hereditary Childhood Retinal Blindness. <i>Asia-Pacific Journal of Ophthalmology</i> , 2018 , 7, 183-1	9:1 5	11
195	Personalized Proteomics for Precision Health: Identifying Biomarkers of Vitreoretinal Disease. Translational Vision Science and Technology, 2018 , 7, 12	3.3	21
194	Extracellular Matrix: Alport Syndrome. Advances in Experimental Medicine and Biology, 2018, 1085, 197-	1986	O
193	Glossary of Relevant Genetic and Molecular/Cell Biology. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 23-28	3.6	
192	Autosomal Dominant Retinitis Pigmentosa. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 69-77	3.6	15
191	Best Vitelliform Macular Dystrophy. Advances in Experimental Medicine and Biology, 2018, 1085, 79-90	3.6	6
190	Occult Macular Dystrophy. Advances in Experimental Medicine and Biology, 2018, 1085, 103-104	3.6	2
189	Sorsby Pseudoinflammatory Fundus Dystrophy. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 105-108	3.6	1
188	Retinitis Pigmentosa (Non-syndromic). Advances in Experimental Medicine and Biology, 2018, 1085, 125-	13.66	24
187	Stargardt Disease. Advances in Experimental Medicine and Biology, 2018, 1085, 139-151	3.6	19
186	Optical Coherence Tomography. Advances in Experimental Medicine and Biology, 2018, 1085, 11-13	3.6	2
185	Mitochondrial Disorder: Maternally Inherited Diabetes and Deafness. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 163-165	3.6	7
184	Ciliopathy: AlstrEn Syndrome. Advances in Experimental Medicine and Biology, 2018, 1085, 179-180	3.6	8
183	Ciliopathy: Sjigren-Larsson Syndrome. Advances in Experimental Medicine and Biology, 2018 , 1085, 181-18	3 3 .6	1
182	Inborn Errors of Metabolism: Gyrate Atrophy. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 183-185	3.6	6

(2018-2018)

181	Inborn Errors of Metabolism: Refsum Disease. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 191-192	3.6	2
180	Inborn Errors of Metabolism: Bietti Crystalline Dystrophy. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 193-195	3.6	1
179	Neurofibromatosis. Advances in Experimental Medicine and Biology, 2018, 1085, 209-211	3.6	
178	Syphilis. Advances in Experimental Medicine and Biology, 2018, 1085, 219-221	3.6	2
177	Drug-Induced Retinal Toxicity. Advances in Experimental Medicine and Biology, 2018, 1085, 227-232	3.6	4
176	Genetic Testing for Inherited Retinal Dystrophy: Basic Understanding. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1085, 261-268	3.6	2
175	X-linked Choroideremia. Advances in Experimental Medicine and Biology, 2018, 1085, 37-42	3.6	2
174	Rod Monochromatism (Achromatopsia). Advances in Experimental Medicine and Biology, 2018 , 1085, 119)- <u>1</u> .83	7
173	Fundus Autofluorescence. Advances in Experimental Medicine and Biology, 2018, 1085, 15-16	3.6	4
172	Tuberous Sclerosis. Advances in Experimental Medicine and Biology, 2018 , 1085, 205-207	3.6	4
171	X-linked Ocular Albinism. Advances in Experimental Medicine and Biology, 2018, 1085, 49-52	3.6	2
170	Fluorescein Angiography. Advances in Experimental Medicine and Biology, 2018, 1085, 7-10	3.6	3
169	Leber Congenital Amaurosis. Advances in Experimental Medicine and Biology, 2018, 1085, 131-137	3.6	23
168	Ciliopathy: Usher Syndrome. Advances in Experimental Medicine and Biology, 2018, 1085, 167-170	3.6	17
167	Ciliopathy: Bardet-Biedl Syndrome. Advances in Experimental Medicine and Biology, 2018, 1085, 171-174	3.6	28
166	Autoimmune Retinopathy. Advances in Experimental Medicine and Biology, 2018, 1085, 223-226	3.6	2
165	X-linked Retinitis Pigmentosa. Advances in Experimental Medicine and Biology, 2018, 1085, 31-35	3.6	9
164	Revolution in Gene Medicine Therapy and Genome Surgery. <i>Genes</i> , 2018 , 9,	4.2	17

163	Quantitative progression of retinitis pigmentosa by optical coherence tomography angiography. <i>Scientific Reports</i> , 2018 , 8, 13130	4.9	25
162	Structural disease progression in PDE6-associated autosomal recessive retinitis pigmentosa. <i>Ophthalmic Genetics</i> , 2018 , 39, 610-614	1.2	13
161	Missense mutation in SLIT2 associated with congenital myopia, anisometropia, connective tissue abnormalities, and obesity. <i>Orphanet Journal of Rare Diseases</i> , 2018 , 13, 138	4.2	3
160	Deferoxamine-induced electronegative ERG responses. <i>Documenta Ophthalmologica</i> , 2018 , 137, 15-23	2.2	2
159	Congenital grouped albinotic spots of the retinal pigment epithelium in a patient with hemihypertrophy and caffau lait spots. <i>Documenta Ophthalmologica</i> , 2018 , 137, 9-14	2.2	1
158	Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. <i>Ophthalmic Genetics</i> , 2018 , 39, 512-516	1.2	7
157	Extremely hypomorphic and severe deep intronic variants in the locus result in varying Stargardt disease phenotypes. <i>Journal of Physical Education and Sports Management</i> , 2018 , 4,	2.8	45
156	Two-year progression analysis of RPE65 autosomal dominant retinitis pigmentosa. <i>Ophthalmic Genetics</i> , 2018 , 39, 544-549	1.2	16
155	Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. <i>Free Radical Biology and Medicine</i> , 2018 , 124, 408-419	7.8	24
154	Multimodal analysis of the Preferred Retinal Location and the Transition Zone in patients with Stargardt Disease. <i>Graefeks Archive for Clinical and Experimental Ophthalmology</i> , 2017 , 255, 1307-1317	3.8	11
153	Measurement and Reproducibility of Preserved Ellipsoid Zone Area and Preserved Retinal Pigment Epithelium Area in Eyes With Choroideremia. <i>American Journal of Ophthalmology</i> , 2017 , 179, 110-117	4.9	43
152	Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 5259-5264	11.5	17
151	Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. <i>Journal of Medical Genetics</i> , 2017 , 54, 404-412	5.8	97
150	Peripapillary sparing in RDH12-associated Leber congenital amaurosis. <i>Ophthalmic Genetics</i> , 2017 , 38, 575-579	1.2	15
149	Disease in a Dish Modeling of Retinal Diseases 2017, 107-115		
148	Unexpected mutations after CRISPR-Cas9 editing in vivo. <i>Nature Methods</i> , 2017 , 14, 547-548	21.6	233
147	Evaluating Structural Progression of Retinitis Pigmentosa After Cataract Surgery. <i>American Journal of Ophthalmology</i> , 2017 , 180, 117-123	4.9	7
146	Proteomic Analysis of Elevated Intraocular Pressure with Retinal Detachment. <i>American Journal of Ophthalmology Case Reports</i> , 2017 , 5, 107-110	1.3	8

(2017-2017)

145	Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. <i>European Journal of Human Genetics</i> , 2017 , 25, 735-743	5.3	26	
144	CRISPR applications in ophthalmologic genome surgery. <i>Current Opinion in Ophthalmology</i> , 2017 , 28, 252-259	5.1	20	
143	Two pathways of rod photoreceptor cell death induced by elevated cGMP. <i>Human Molecular Genetics</i> , 2017 , 26, 2299-2306	5.6	33	
142	Structural modeling of a novel mutation that causes foveal hypoplasia. <i>Molecular Genetics & Genomic Medicine</i> , 2017 , 5, 202-209	2.3	18	
141	Achromatopsia mutations target sequential steps of ATF6 activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 400-405	11.5	34	
140	Quantitative Autofluorescence Intensities in Acute Zonal Occult Outer Retinopathy vs Healthy Eyes. <i>JAMA Ophthalmology</i> , 2017 , 135, 1330-1338	3.9	19	
139	CRISPR-mediated Ophthalmic Genome Surgery. Current Ophthalmology Reports, 2017, 5, 199-206	1.8	10	
138	Patient-specific mutations impair BESTROPHIN1's essential role in mediating Ca-dependent Cl currents in human RPE. <i>ELife</i> , 2017 , 6,	8.9	30	
137	Efficacy of rituximab in non-paraneoplastic autoimmune retinopathy. <i>Orphanet Journal of Rare Diseases</i> , 2017 , 12, 129	4.2	11	
136	Calpain-5 gene expression in the mouse eye and brain. <i>BMC Research Notes</i> , 2017 , 10, 602	2.3	3	
135	A Comparison of En Face Optical Coherence Tomography and Fundus Autofluorescence in Stargardt Disease 2017 , 58, 5227-5236		20	
134	CRISPR-Cas Genome Surgery in Ophthalmology. <i>Translational Vision Science and Technology</i> , 2017 , 6, 13	3.3	12	
133	Quantifying Fundus Autofluorescence in Patients With Retinitis Pigmentosa 2017 , 58, 1843-1855		48	
132	Electroretinography Reveals Difference in Cone Function between Syndromic and Nonsyndromic USH2A Patients. <i>Scientific Reports</i> , 2017 , 7, 11170	4.9	17	
131	Retrospective Analysis of Structural Disease Progression in Retinitis Pigmentosa Utilizing Multimodal Imaging. <i>Scientific Reports</i> , 2017 , 7, 10347	4.9	39	
130	Gene Therapy Restores Mfrp and Corrects Axial Eye Length. Scientific Reports, 2017, 7, 16151	4.9	28	
129	Viral Vectors, Engineered Cells and the CRISPR Revolution. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 1016, 3-27	3.6	11	
128	CRISPR in the Retina: Evaluation of Future Potential. <i>Advances in Experimental Medicine and Biology</i> , 2017 , 1016, 147-155	3.6	3	

127	Dissection of Human Retina and RPE-Choroid for Proteomic Analysis. <i>Journal of Visualized Experiments</i> , 2017 ,	1.6	5
126	PHENOTYPING CHOROIDEREMIA AND ITS CARRIER STATE WITH MULTIMODAL IMAGING TECHNIQUES. <i>Retinal Cases and Brief Reports</i> , 2017 , 11 Suppl 1, S178-S181	1.1	10
125	Correction of Monogenic and Common Retinal Disorders with Gene Therapy. <i>Genes</i> , 2017 , 8,	4.2	29
124	Stem Cell Therapies in Retinal Disorders. <i>Cells</i> , 2017 , 6,	7.9	28
123	Therapeutic drug repositioning using personalized proteomics of liquid biopsies. <i>JCI Insight</i> , 2017 , 2,	9.9	19
122	Genome Surgery and Gene Therapy in Retinal Disorders. <i>Yale Journal of Biology and Medicine</i> , 2017 , 90, 523-532	2.4	8
121	ERG and OCT findings of a patient with a clinical diagnosis of occult macular dystrophy in a patient of Ashkenazi Jewish descent associated with a novel mutation in the gene encoding RP1L1. <i>BMJ Case Reports</i> , 2017 , 2017,	0.9	2
120	Skin Biopsy and Patient-Specific Stem Cell Lines. <i>Methods in Molecular Biology</i> , 2016 , 1353, 77-88	1.4	10
119	Genome Editing in the Retina: A Case Study in CRISPR for a Patient-Specific Autosomal Dominant Retinitis Pigmentosa Model 2016 , 149-162		
118	Catenin delta-1 (CTNND1) phosphorylation controls the mesenchymal to epithelial transition in astrocytic tumors. <i>Human Molecular Genetics</i> , 2016 , 25, 4201-4210	5.6	7
117	Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. <i>Human Molecular Genetics</i> , 2016 , 25, 4244-4255	5.6	18
116	Gene and cell-based therapies for inherited retinal disorders: An update. <i>American Journal of Medical Genetics, Part C: Seminars in Medical Genetics,</i> 2016 , 172, 349-366	3.1	50
115	Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. <i>Signal Transduction and Targeted Therapy</i> , 2016 , 1,	21	20
114	Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. <i>Scientific Reports</i> , 2016 , 6, 19969	4.9	112
113	MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA. <i>Retina</i> , 2016 , 36 Suppl 1, S147-S158	3.6	20
112	Precision Medicine: Personalized Proteomics for the Diagnosis and Treatment of Idiopathic Inflammatory Disease. <i>JAMA Ophthalmology</i> , 2016 , 134, 444-8	3.9	44
111	Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina. <i>Journal of Biological Chemistry</i> , 2016 , 291, 4698-710	5.4	58
110	Complex inheritance of ABCA4 disease: four mutations in a family with multiple macular phenotypes. <i>Human Genetics</i> , 2016 , 135, 9-19	6.3	33

109	Photopsia and a temporal visual field defect. Survey of Ophthalmology, 2016, 61, 363-7	6.1	2
108	Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells. <i>Advances in Experimental Medicine and Biology</i> , 2016 , 854, 549-55	3.6	22
107	Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration. <i>Journal of Clinical Investigation</i> , 2016 , 126, 4659-4673	15.9	52
106	Calpain-5 Expression in the Retina Localizes to Photoreceptor Synapses 2016 , 57, 2509-21		20
105	Quantitative Autofluorescence and ABCA4 Disease 2016 , 57, 3297-8		
104	Simultaneous Expression of ABCA4 and GPR143 Mutations: A Complex Phenotypic Manifestation 2016 , 57, 3409-15		6
103	Secondary glaucoma in CAPN5-associated neovascular inflammatory vitreoretinopathy. <i>Clinical Ophthalmology</i> , 2016 , 10, 1187-97	2.5	7
102	Complication of Autologous Stem Cell Transplantation in Retinitis Pigmentosa. <i>JAMA Ophthalmology</i> , 2016 , 134, 711-2	3.9	12
101	CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. <i>Molecular Therapy</i> , 2016 , 24, 1388-94	11.7	74
100	BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE. <i>Human Molecular Genetics</i> , 2016 , 25, 2672-2680	5.6	33
99	Laser-Induced Photic Injury Phenocopies Macular Dystrophy. <i>Ophthalmic Genetics</i> , 2016 , 37, 59-67	1.2	22
98	Small-angle X-ray scattering of calpain-5 reveals a highly open conformation among calpains. <i>Journal of Structural Biology</i> , 2016 , 196, 309-318	3.4	10
97	CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. <i>Human Molecular Genetics</i> , 2015 , 24, 4584-98	5.6	30
96	Rapid resolution of retinoschisis with acetazolamide. <i>Documenta Ophthalmologica</i> , 2015 , 131, 63-70	2.2	11
95	BEST1: the Best Target for Gene and Cell Therapies. <i>Molecular Therapy</i> , 2015 , 23, 1805-9	11.7	34
94	Multimodal Imaging of Central Retinal Disease Progression in a 2-Year Mean Follow-up of Retinitis Pigmentosa. <i>American Journal of Ophthalmology</i> , 2015 , 160, 786-98.e4	4.9	67
93	Bilateral Concordance of the Fundus Hyperautofluorescent Ring in Typical Retinitis Pigmentosa Patients. <i>Ophthalmic Genetics</i> , 2015 , 36, 113-22	1.2	19
92	Rod metabolic demand drives progression in retinopathies. <i>Taiwan Journal of Ophthalmology</i> , 2015 , 5, 105-108	1.4	11

91	Quantitative fundus autofluorescence distinguishes ABCA4-associated and non-ABCA4-associated bull's-eye maculopathy. <i>Ophthalmology</i> , 2015 , 122, 345-55	7.3	60
90	Quantitative Fundus Autofluorescence and Optical Coherence Tomography in ABCA4 Carriers 2015 , 56, 7274-85		23
89	Quantitative Fundus Autofluorescence and Optical Coherence Tomography in PRPH2/RDS- and ABCA4-Associated Disease Exhibiting Phenotypic Overlap 2015 , 56, 3159-70		43
88	Patient-Specific iPSC-Derived RPE for Modeling of Retinal Diseases. <i>Journal of Clinical Medicine</i> , 2015 , 4, 567-78	5.1	22
87	Structural modeling of a novel CAPN5 mutation that causes uveitis and neovascular retinal detachment. <i>PLoS ONE</i> , 2015 , 10, e0122352	3.7	29
86	Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. <i>Nature Genetics</i> , 2015 , 47, 757-65	36.3	143
85	Quantitative autofluorescence as a clinical tool for expedited differential diagnosis of retinal degeneration. <i>JAMA Ophthalmology</i> , 2015 , 133, 219-20	3.9	6
84	Personalized therapeutic strategies for patients with retinitis pigmentosa. <i>Expert Opinion on Biological Therapy</i> , 2015 , 15, 391-402	5.4	38
83	Differentiation of hypothalamic-like neurons from human pluripotent stem cells. <i>Journal of Clinical Investigation</i> , 2015 , 125, 796-808	15.9	84
82	Halting progressive neurodegeneration in advanced retinitis pigmentosa. <i>Journal of Clinical Investigation</i> , 2015 , 125, 3704-13	15.9	49
81	Emerging Treatments for Retinitis Pigmentosa: Genes and stem cells, as well as new electronic and medical therapies, are gaining ground 2015 , 12, 52-70		17
80	Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. <i>Human Molecular Genetics</i> , 2014 , 23, 3445-55	5.6	74
79	The role of fundus autofluorescence in late-onset retinitis pigmentosa (LORP) diagnosis. <i>Ophthalmic Genetics</i> , 2014 , 35, 170-9	1.2	7
78	Mid-stage intervention achieves similar efficacy as conventional early-stage treatment using gene therapy in a pre-clinical model of retinitis pigmentosa. <i>Human Molecular Genetics</i> , 2014 , 23, 514-23	5.6	28
77	Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. <i>Investigative Ophthalmology and Visual Science</i> , 2014 , 55, 8134-43		62
76	A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. <i>Cell</i> , 2014 , 159, 200-214	56.2	239
75	New syndrome with retinitis pigmentosa is caused by nonsense mutations in retinol dehydrogenase RDH11. <i>Human Molecular Genetics</i> , 2014 , 23, 5774-80	5.6	27
74	A novel RPGR mutation masquerading as Stargardt disease. <i>British Journal of Ophthalmology</i> , 2014 , 98, 709-11	5.5	17

73	Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. <i>Molecular Therapy</i> , 2014 , 22, 1688-97	11.7	71
72	Quantitative fundus autofluorescence and optical coherence tomography in best vitelliform macular dystrophy 2014 , 55, 1471-82		74
71	Quantitative fundus autofluorescence in recessive Stargardt disease 2014 , 55, 2841-52		127
70	Retinal damage in chloroquine maculopathy, revealed by high resolution imaging: a case report utilizing adaptive optics scanning laser ophthalmoscopy. <i>Korean Journal of Ophthalmology: KJO</i> , 2014 , 28, 100-7	1.2	10
69	The external limiting membrane in early-onset Stargardt disease 2014 , 55, 6139-49		45
68	Functional validation of a human CAPN5 exome variant by lentiviral transduction into mouse retina. <i>Human Molecular Genetics</i> , 2014 , 23, 2665-77	5.6	26
67	Analysis of the ABCA4 genomic locus in Stargardt disease. <i>Human Molecular Genetics</i> , 2014 , 23, 6797-80	6 5.6	95
66	Structural and genetic assessment of the ABCA4-associated optical gap phenotype 2014 , 55, 7217-26		21
65	Choroidal and retinal thickening in severe preeclampsia 2014 , 55, 5723-9		28
64	General pathophysiology in retinal degeneration. <i>Developments in Ophthalmology</i> , 2014 , 53, 33-43		44
63	Multimodal imaging in a case of deferoxamine-induced maculopathy. <i>Retinal Cases and Brief Reports</i> , 2014 , 8, 306-9	1.1	10
62	Next-generation sequencing revealed a novel mutation in the gene encoding the beta subunit of rod phosphodiesterase. <i>Ophthalmic Genetics</i> , 2014 , 35, 142-50	1.2	16
61	Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. <i>JAMA Ophthalmology</i> , 2014 , 132, 437-45	3.9	50
60	Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. <i>Ophthalmology</i> , 2014 , 121, 1773-82	7.3	51
59	Disease progression in autosomal dominant cone-rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. <i>Documenta Ophthalmologica</i> , 2014 , 128, 59-67	2.2	22
58	Silencing of tuberin enhances photoreceptor survival and function in a preclinical model of retinitis pigmentosa (an american ophthalmological society thesis). <i>Transactions of the American Ophthalmological Society</i> , 2014 , 112, 103-15		12
57	Cone photoreceptor abnormalities correlate with vision loss in a case of acute posterior multifocal placoid pigment epitheliopathy. <i>Ophthalmic Surgery Lasers and Imaging Retina</i> , 2014 , 45, 74-8	1.4	5
56	Early structural anomalies observed by high-resolution imaging in two related cases of autosomal-dominant retinitis pigmentosa. <i>Ophthalmic Surgery Lasers and Imaging Retina</i> , 2014 , 45, 469-4	4 7 4	17

55	Hyperautofluorescent macular ring in a series of patients with enhanced S-cone syndrome. <i>Ophthalmic Surgery Lasers and Imaging Retina</i> , 2014 , 45, 592-5	1.4	7
54	Disruption of the human cone photoreceptor mosaic from a defect in NR2E3 transcription factor function in young adults. <i>Graefels Archive for Clinical and Experimental Ophthalmology</i> , 2013 , 251, 2299-	388	15
53	Abnormality in the external limiting membrane in early Stargardt disease. <i>Ophthalmic Genetics</i> , 2013 , 34, 75-7	1.2	22
52	Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. <i>Experimental Eye Research</i> , 2013 , 113, 41-8	3.7	35
51	Cellular imaging demonstrates genetic mosaicism in heterozygous carriers of an X-linked ciliopathy gene. <i>European Journal of Human Genetics</i> , 2013 , 21, 1240-8	5.3	22
50	Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Human Molecular Genetics, 2013 , 22, 558-67	5.6	47
49	Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa 2013 , 54, 585-91		71
48	Therapeutic margins in a novel preclinical model of retinitis pigmentosa. <i>Journal of Neuroscience</i> , 2013 , 33, 13475-83	6.6	24
47	Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa. <i>American Journal of Ophthalmology</i> , 2012 , 153, 143-54.e2	4.9	26
46	Progressive constriction of the hyperautofluorescent ring in retinitis pigmentosa. <i>American Journal of Ophthalmology</i> , 2012 , 153, 718-27, 727.e1-2	4.9	65
45	Mice with a D190N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. <i>Molecular Medicine</i> , 2012 , 18, 549-55	6.2	19
44	Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. <i>Molecular Medicine</i> , 2012 , 18, 1312-9	6.2	136
43	Retinal phenotypes in patients homozygous for the G1961E mutation in the ABCA4 gene 2012 , 53, 4458	3-67	61
42	Effect of the ILE86TER mutation in the Bubunit of cGMP phosphodiesterase (PDE6) on rod photoreceptor signaling. <i>Cellular Signalling</i> , 2012 , 24, 181-8	4.9	8
41	Disruption in Bruch membrane in patients with Stargardt disease. <i>Ophthalmic Genetics</i> , 2012 , 33, 49-52	1.2	11
40	Subretinal injection of gene therapy vectors and stem cells in the perinatal mouse eye. <i>Journal of Visualized Experiments</i> , 2012 ,	1.6	18
39	Unilateral retinitis pigmentosa: a proposal of genetic pathogenic mechanisms. <i>European Journal of Ophthalmology</i> , 2012 , 22, 654-60	1.9	18
38	Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa. <i>Retina</i> , 2012 , 32, 349-57	3.6	46

(2009-2012)

37	Vigabatrin-induced retinal toxicity is partially mediated by signaling in rod and cone photoreceptors. <i>PLoS ONE</i> , 2012 , 7, e43889	3.7	12
36	Familial discordance in Stargardt disease. <i>Molecular Vision</i> , 2012 , 18, 227-33	2.3	12
35	Functional Analysis of Retinal Flecks in Stargardt Disease. <i>Journal of Clinical & Experimental Ophthalmology</i> , 2012 , 3,	Ο	14
34	Quantification of peripapillary sparing and macular involvement in Stargardt disease (STGD1) 2011 , 52, 8006-15		39
33	Mouse eye enucleation for remote high-throughput phenotyping. <i>Journal of Visualized Experiments</i> , 2011 ,	1.6	16
32	shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa. <i>Journal of Cellular and Molecular Medicine</i> , 2011 , 15, 1778-87	5.6	22
31	Function of the asparagine 74 residue of the inhibitory Eubunit of retinal rod cGMP-phophodiesterase (PDE) in vivo. <i>Cellular Signalling</i> , 2011 , 23, 1584-9	4.9	5
30	Allelic and phenotypic heterogeneity in ABCA4 mutations. <i>Ophthalmic Genetics</i> , 2011 , 32, 165-74	1.2	73
29	Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. <i>Experimental Biology and Medicine</i> , 2011 , 236, 1211-7	3.7	23
28	Loss of peripapillary sparing in non-group I Stargardt disease. Experimental Eye Research, 2010, 91, 592-	69 9	23
27	Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. <i>Transplantation</i> , 2010 , 89, 911-9	1.8	62
26	Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots. <i>Retina</i> , 2010 , 30, 1217-22	3.6	6
25	Rapid and noninvasive imaging of retinal ganglion cells in live mouse models of glaucoma. <i>Molecular Imaging and Biology</i> , 2010 , 12, 386-93	3.8	6
24	Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for Retinitis Pigmentosa: Transplantation 2010 April 27;89 (8): 911-919. <i>Annals of Neurosciences</i> , 2010 , 17, 185-6	1.1	
23	A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease 2009 , 50, 3953-9		111
22	Autofluorescence imaging in rubella retinopathy. Ocular Immunology and Inflammation, 2009, 17, 400-2	2.8	8
21	Fundus autofluorescence in cone dystrophy. <i>Documenta Ophthalmologica</i> , 2009 , 119, 141-4	2.2	21
20	G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull's eye maculopathy. <i>Experimental Eye Research</i> , 2009 , 89, 16-24	3.7	76

19	Light-dependent phosphorylation of the gamma subunit of cGMP-phophodiesterase (PDE6gamma) at residue threonine 22 in intact photoreceptor neurons. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 390, 1149-53	3.4	9
18	Cellular and molecular origin of circumpapillary dysgenesis of the pigment epithelium. <i>Ophthalmology</i> , 2009 , 116, 971-80	7:3	6
17	Case report: autofluorescence imaging and phenotypic variance in a sibling pair with early-onset retinal dystrophy due to defective CRB1 function. <i>Current Eye Research</i> , 2009 , 34, 395-400	2.9	17
16	Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. <i>Retina</i> , 2009 , 29, 1025-31	3.6	89
15	A novel mutation and phenotypes in phosphodiesterase 6 deficiency. <i>American Journal of Ophthalmology</i> , 2008 , 146, 780-8	4.9	45
14	Phenotype-genotype correlations in autosomal dominant retinitis pigmentosa caused by RHO, D190N. <i>Current Eye Research</i> , 2008 , 33, 1014-22	2.9	18
13	Modulation of phosphodiesterase6 turnoff during background illumination in mouse rod photoreceptors. <i>Journal of Neuroscience</i> , 2008 , 28, 2064-74	6.6	54
12	Preferred retinal locus in macular disease: characteristics and clinical implications. <i>Retina</i> , 2008 , 28, 123	43.460	52
11	Functional rescue of degenerating photoreceptors in mice homozygous for a hypomorphic cGMP phosphodiesterase 6 b allele (Pde6bH620Q) 2008 , 49, 5067-76		50
10	Electronegative electroretinogram associated with topiramate toxicity and vitelliform maculopathy. <i>Documenta Ophthalmologica</i> , 2008 , 116, 57-60	2.2	12
9	Non-vascular vision loss in pseudoxanthoma elasticum. <i>Documenta Ophthalmologica</i> , 2008 , 117, 65-7	2.2	9
8	Autofluorescence imaging in a case of benign familial fleck retina. JAMA Ophthalmology, 2007, 125, 714	1-5	10
7	Transgenic mice carrying the H258N mutation in the gene encoding the beta-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness. <i>Human Mutation</i> , 2007 , 28, 243-54	4.7	33
6	Novel phenotypic and genotypic findings in X-linked retinoschisis. <i>JAMA Ophthalmology</i> , 2007 , 125, 259	9-67	53
5	Stationary night blindness or progressive retinal degeneration in mice carrying different alleles of PDE gamma. <i>Frontiers in Bioscience - Landmark</i> , 2003 , 8, s666-75	2.8	9
4	The positive role of the carboxyl terminus of the gamma subunit of retinal cGMP-phosphodiesterase in maintaining phosphodiesterase activity in vivo. <i>Vision Research</i> , 2002 , 42, 439-45	2.1	13
3	In vivo studies of the gamma subunit of retinal cGMP-phophodiesterase with a substitution of tyrosine-84. <i>Biochemical Journal</i> , 2001 , 353, 467-74	3.8	10
2	In vivo studies of the Bubunit of retinal cGMP-phophodiesterase with a substitution of tyrosine-84. <i>Biochemical Journal</i> , 2001 , 353, 467-474	3.8	11

LIST OF PUBLICATIONS

Gene Therapy and Surgery for Retinal Diseases1-10