
Alan Casey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955820/publications.pdf Version: 2024-02-01

ALAN CASEV

#	Article	IF	CITATIONS
1	In vitro cytotoxicity, cellular uptake, reactive oxygen species and cell cycle arrest studies of novel ruthenium(II) polypyridyl complexes towards A549 lung cancer cell line. Drug and Chemical Toxicology, 2021, 44, 319-329.	1.2	3
2	Monitoring the biochemical changes occurring to human keratinocytes exposed to solar radiation by Raman spectroscopy. Journal of Biophotonics, 2021, 14, e202000337.	1.1	4
3	Biochemical impact of solar radiation exposure on human keratinocytes monitored by Raman spectroscopy; effects of cell culture environment. Journal of Biophotonics, 2021, 14, e202100058.	1.1	0
4	Evaluation of silver nanoparticle encapsulation in DPPC-based liposome by different methods for enhanced cytotoxicity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 860-871.	1.8	6
5	Liposomal encapsulation of silver nanoparticles (AgNP) improved nanoparticle uptake and induced redox imbalance to activate caspase-dependent apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 120-134.	2.2	17
6	Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Archives of Biochemistry and Biophysics, 2020, 689, 108462.	1.4	17
7	Surface modification of silver nanoparticle (AgNP) by liposomal encapsulation mitigates AgNP-induced inflammation. Toxicology in Vitro, 2019, 61, 104641.	1.1	15
8	<i>In vitro</i> comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug and Chemical Toxicology, 2019, 42, 9-23.	1.2	20
9	Synthesis, characterisation and DNA intercalation studies of regioisomers of ruthenium (II) polypyridyl complexes. Journal of Inorganic Biochemistry, 2018, 182, 71-82.	1.5	13
10	Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 1631-1646.	1.9	21
11	Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Scientific Reports, 2018, 8, 5298.	1.6	62
12	Doxorubicin kinetics and effects on lung cancer cell lines using <i>in vitro</i> Raman microâ€spectroscopy: binding signatures, drug resistance and DNA repair. Journal of Biophotonics, 2018, 11, e201700060.	1.1	29
13	Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen speciesâ€independent apoptosis. Journal of Applied Toxicology, 2018, 38, 616-627.	1.4	24
14	Raman spectroscopy detects biochemical changes due to different cell culture environments in live cells in vitro. Analytical and Bioanalytical Chemistry, 2018, 410, 7537-7550.	1.9	9
15	Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices. Cytotechnology, 2018, 70, 261-273.	0.7	33
16	Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis. Applied Optics, 2018, 57, E11.	0.9	22
17	Differentiating responses of lung cancer cell lines to Doxorubicin exposure: <i>in vitro</i> Raman micro spectroscopy, oxidative stress and bclâ€2 protein expression. Journal of Biophotonics, 2017, 10, 151-165.	1.1	42
18	Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure. Analyst, The, 2017, 142, 3848-3856.	1.7	13

ALAN CASEY

#	Article	IF	CITATIONS
19	Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 372-380.	2.0	72
20	Label-free, high content screening using Raman microspectroscopy: the toxicological response of different cell lines to amine-modified polystyrene nanoparticles (PS-NH ₂). Analyst, The, 2017, 142, 3500-3513.	1.7	15
21	Silver nanoparticles induce proâ€inflammatory gene expression and inflammasome activation in human monocytes. Journal of Applied Toxicology, 2016, 36, 1311-1320.	1.4	62
22	In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst, The, 2016, 141, 5417-5431.	1.7	26
23	Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. Journal of Inorganic Biochemistry, 2016, 159, 120-132.	1.5	52
24	Evaluation of cytotoxicity profile and intracellular localisation of doxorubicin-loaded chitosan nanoparticles. Analytical and Bioanalytical Chemistry, 2016, 408, 5443-5455.	1.9	27
25	Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices. Toxicology in Vitro, 2016, 33, 99-104.	1.1	29
26	Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. British Journal of Cancer, 2016, 114, 435-443.	2.9	74
27	Potential of biofluid components to modify silver nanoparticle toxicity. Journal of Applied Toxicology, 2015, 35, 665-680.	1.4	11
28	The surfactant dipalmitoylphophatidylcholine modifies acute responses in alveolar carcinoma cells in response to lowâ€dose silver nanoparticle exposure. Journal of Applied Toxicology, 2015, 35, 1141-1149.	1.4	5
29	Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus. Analyst, The, 2015, 140, 5908-5919.	1.7	38
30	Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin. Analyst, The, 2015, 140, 4212-4223.	1.7	80
31	Determination of nanoparticle localisation within subcellular organelles in vitro using Raman spectroscopy. Analytical Methods, 2015, 7, 10000-10017.	1.3	25
32	Investigating the role of shape on the biological impact of gold nanoparticles <i>in vitro</i> . Nanomedicine, 2015, 10, 2643-2657.	1.7	33
33	In vitro evaluation of the cytotoxicity of a folate-modified β-cyclodextrin as a new anti-cancer drug delivery system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 85-94.	0.9	10
34	Antimicrobial properties of nano-silver: A cautionary approach to ionic interference. Journal of Colloid and Interface Science, 2015, 443, 56-64.	5.0	33
35	Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Analytical Methods, 2014, 6, 9116-9123.	1.3	236
36	A Comparative Cytotoxic Evaluation of Acrylamide and Diacetone Acrylamide to Investigate Their Suitability for Holographic Photopolymer Formulations. International Journal of Polymer Science, 2013, 2013, 1-6.	1.2	12

ALAN CASEY

#	Article	IF	CITATIONS
37	Potent oxidative DNA cleavage by the di-copper cytotoxin: [Cu2(μ-terephthalate)(1,10-phen)4]2+. Chemical Communications, 2012, 48, 6906.	2.2	54
38	Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicology in Vitro, 2012, 26, 238-251.	1.1	160
39	Radical-induced DNA damage by cytotoxic square-planar copper(II) complexes incorporating o-phthalate and 1,10-phenanthroline or 2,2′-dipyridyl. Free Radical Biology and Medicine, 2012, 53, 564-576.	1.3	64
40	Identifying and localizing intracellular nanoparticles using Raman spectroscopy. Analyst, The, 2012, 137, 1111.	1.7	76
41	Water-soluble bis(1,10-phenanthroline) octanedioate Cu2+ and Mn2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: promising leads for chemotherapeutic drug development. MedChemComm, 2011, 2, 579.	3.5	73
42	Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology, 2011, 5, 1-11.	1.6	141
43	Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose. Journal of Physics: Conference Series, 2011, 304, 012038.	0.3	2
44	SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicology and Applied Pharmacology, 2009, 234, 378-390.	1.3	89
45	Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicology and Applied Pharmacology, 2009, 236, 276-281.	1.3	90
46	Preparation, characterization of NIPAM and NIPAM/BAM copolymer nanoparticles and their acute toxicity testing using an aquatic test battery. Aquatic Toxicology, 2009, 92, 146-154.	1.9	55
47	An Ecotoxicological Study of <i>Poly(amidoamine)</i> Dendrimers-Toward Quantitative Structure Activity Relationships. Environmental Science & Technology, 2009, 43, 6864-6869.	4.6	60
48	Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicology Letters, 2008, 179, 78-84.	0.4	160
49	In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in Vitro, 2007, 21, 438-448.	1.1	399
50	A new approach to the toxicity testing of carbon-based nanomaterials—The clonogenic assay. Toxicology Letters, 2007, 174, 49-60.	0.4	233
51	Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon, 2007, 45, 34-40.	5.4	111
52	Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon, 2007, 45, 1425-1432.	5.4	274
53	Interaction of single walled carbon nanotubes with starch-based systems. , 2005, , .		0
54	Interaction of Carbon Nanotubes with Sugar Complexes. Synthetic Metals, 2005, 153, 357-360.	2.1	34