Lassi Aarniovuori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955810/publications.pdf

Version: 2024-02-01

840776 996975 36 497 11 15 citations h-index g-index papers 36 36 36 470 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evaluation of 5 kW Converter-Fed Induction Motor Losses by Analytical Calculation. , 2022, , .		1
2	Emulating Induction Machine Loss Segregation Procedure with FEM., 2021, , .		2
3	Design and Manufacturing of a Modular Low-Voltage Multimegawatt High-Speed Solid-Rotor Induction Motor. IEEE Transactions on Industry Applications, 2021, 57, 6903-6912.	4.9	15
4	Voltage-Source Converter Energy Efficiency Classification in Accordance With IEC 61800-9-2. IEEE Transactions on Industrial Electronics, 2020, 67, 8242-8251.	7.9	7
5	Comparison of Commercial and Open-Source FEM Software: A Case Study. IEEE Transactions on Industry Applications, 2020, 56, 6411-6419.	4.9	4
6	Converter-Fed Induction Motor Finite Element Analysis With Different Time Steps. , 2020, , .		2
7	Analytical Evaluation of High-Efficiency Induction Motor Losses. , 2019, , .		7
8	Classification of Power Quality Disturbances Using Wigner-Ville Distribution and Deep Convolutional Neural Networks. IEEE Access, 2019, 7, 119099-119109.	4.2	78
9	INVESTIGATION OF THE EFFECT OF BONDING POINTS ON METAL SURFACE-MOUNTED FBG SENSORS FOR ELECTRIC MACHINES. Progress in Electromagnetics Research C, 2019, 97, 255-265.	0.9	5
10	Experimental Investigation of the Losses and Efficiency of 75 kW Induction Motor Drive System. , 2019, , .		5
11	Measurement Accuracy Requirements for the Efficiency Classification of Converters and Motors. , 2019, , .		2
12	The Instrumentation Influence on the Motor Loss Determination Uncertainty., 2019, , .		0
13	Advanced Uncertainty Calculation Method for Converter-Fed Motor Loss Determining. , 2019, , .		6
14	Review of Electrical Motor Drives for Electric Vehicle Applications. Mehran University Research Journal of Engineering and Technology, 2019, 38, 525-540.	0.6	12
15	Design Aspects of Direct-on-Line Synchronous Reluctance Motors. , 2018, , .		9
16	IM Loss Evaluation Using FEA and Measurements. , 2018, , .		7
17	Selection of optimal slice count for multi-slice analysis of skewed induction motors., 2017,,.		3
18	PWM power distribution and switching frequency analysis in motor drives. , 2016, , .		4

#	Article	IF	Citations
19	Analysis of 37-kW Converter-Fed Induction Motor Losses. IEEE Transactions on Industrial Electronics, 2016, 63, 5357-5365.	7.9	28
20	Direct Liquid Cooling in Low-Power Electrical Machines: Proof-of-Concept. IEEE Transactions on Energy Conversion, 2016, 31, 1257-1266.	5.2	52
21	Converter-fed induction motor losses in different operating points. , 2016, , .		13
22	Multidisciplinary Design of a Permanent-Magnet Traction Motor for a Hybrid Bus Taking the Load Cycle into Account. IEEE Transactions on Industrial Electronics, 2016, 63, 3397-3408.	7.9	39
23	Application of Calorimetric Method for Loss Measurement of a SynRM Drive System. IEEE Transactions on Industrial Electronics, 2016, 63, 2005-2015.	7.9	22
24	Three alternative methods to determine voltage source converter losses. , 2015, , .		11
25	Determining losses of motors designed for converter operation. , 2015, , .		1
26	Applicability of an open- and balance-type calorimeter to VSC loss measurement. , 2014, , .		1
27	On Low-Voltage DC Network Customer-End Inverter Energy Efficiency. IEEE Transactions on Smart Grid, 2014, 5, 2709-2717.	9.0	12
28	Loss Definition of Electric Drives by a Calorimetric System With Data Processing. IEEE Transactions on Industrial Electronics, 2014, 61, 4432-4442.	7.9	25
29	Parallel chamber calorimetric concept. , 2013, , .		6
30	High-Power Solar Inverter Efficiency Measurements by Calorimetric and Electric Methods. IEEE Transactions on Power Electronics, 2013, 28, 2798-2805.	7.9	36
31	Calorimetric concept for measurement of power losses up to 2ÂkW in electric drives. IET Electric Power Applications, 2013, 7, 453-461.	1.8	19
32	Measurement aspects with open- and balance-type calorimeter. , 2013, , .		3
33	Scalable open- and balance-type calorimeter for measuring power electronics and motors. , 2013, , .		3
34	Frequency converter driven induction motor losses., 2013,,.		6
35	Measurements and Simulations of DTC Voltage Source Converter and Induction Motor Losses. IEEE Transactions on Industrial Electronics, 2012, 59, 2277-2287.	7.9	41
36	Loss calculation of a frequency converter with a fixed-step circuit simulator., 2007,,.		10