Qun Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955666/publications.pdf

Version: 2024-02-01

933447 794594 27 361 10 19 citations h-index g-index papers 27 27 27 536 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Study on wet oxidation process and mechanism for ethylene spent caustic. Environmental Technology (United Kingdom), 2022, 43, 2637-2646.	2.2	3
2	Study on thermodynamics, dynamics and reverse shape separation selectivity of mesoporous UiO-66 for nHEP/MCH. Microporous and Mesoporous Materials, 2021, 314, 110819.	4.4	3
3	Effect of CO2/H2O on adsorptive removal of H2S/SO2 mixture. Environmental Technology (United) Tj ETQq1 1 ().784314 2.2	rgBT /Overlocl
4	Template-free synthesis of hierarchical nanocrystal UiO-66 and its adsorption thermodynamics for <i>n</i> -heptane and methyl cyclohexane. CrystEngComm, 2021, 23, 4549-4559.	2.6	1
5	Qualitative and quantitative determination of trace aldehydes and ketones in food preservative propionic acid for quality improvement. Analytical Methods, 2021, 13, 2989-2996.	2.7	5
6	Study on heat conduction and adsorption/desorption characteristic of MIL-101/few layer graphene composite. Journal of Porous Materials, 2021, 28, 1197-1213.	2.6	6
7	Microbubbles intensification and mechanism of wet air oxidation process of MDEA-containing wastewater. Environmental Technology (United Kingdom), 2021, , 1-21.	2.2	O
8	Self-Confinement Created for a Uniform Ir–Ni/SiO ₂ Catalyst with Enhanced Performances on CO ₂ Reforming of Methane. Energy & Energy	5.1	17
9	Analysis of trace organics and its correlation with COD in condensate from natural gas to hydrogen production. Water Science and Technology, 2020, 82, 843-850.	2.5	2
10	Study on Characterization and Coke Compositions of Deactivated 5â€A Molecular Sieve for Adsorption Separation of Industrial Naphtha. ChemistrySelect, 2020, 5, 12844-12852.	1.5	4
11	Low Temperature Adsorption Desulfurization Performance and Mechanism of CeFe/ZSMâ€5 for H ₂ S and SO ₂ Mixture. ChemistrySelect, 2020, 5, 14869-14876.	1.5	3
12	Study on Adsorption and Desorption Performances of Trace C4–C6 Alkane Mixture on MIL-101(Cr) and WS-480. Energy & Company Study 2019, 33, 7587-7594.	5.1	3
13	Toward Design Rules of Metal–Organic Frameworks for Adsorption Cooling: Effect of Topology on the Ethanol Working Capacity. Chemistry of Materials, 2019, 31, 2702-2706.	6.7	27
14	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	4.6	68
15	Adsorption Mechanism and Regeneration Performance of 13X for H ₂ S and SO ₂ . Energy & SO ₂ .	5.1	26
16	Ultra-deep adsorptive desulfurization process over activated carbon and effects on quality of real diesel. Petroleum Science and Technology, 2018, 36, 1412-1418.	1.5	1
17	Study on the Desorption Process of <i>n</i> -Heptane and Methyl Cyclohexane Using UiO-66 with Hierarchical Pores. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21612-21618.	8.0	16
18	Liquidâ€Phase Oxidation Reaction and Mechanism of <i>p</i> àêDiethylbenzene to <i>p</i> å€Ethylacetophenone with H ₂ O ₂ in a Batch Reactor and a Fixed Bed Reactor. ChemistrySelect, 2018, 3, 6647-6653.	1.5	2

Qun Cui

#	Article	IF	CITATION
19	Dynamic adsorption of n-heptane/methylhexane/2,2,4-trimethylpentane and refining of high purity n-heptane on UiO-66. Journal of Porous Materials, 2016, 23, 165-173.	2.6	6
20	Solvent desulfurization regeneration process and analysis of activated carbon for low-sulfur real diesel. RSC Advances, 2016, 6, 20258-20268.	3.6	13
21	Characterization and Mechanisms of H ₂ S and SO ₂ Adsorption by Activated Carbon. Energy & E	5.1	68
22	Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications. Materials Research Bulletin, 2014, 52, 82-88.	5.2	12
23	Selection and performance of adsorbents in an adsorption refrigeration cycle regenerated with water directly. Adsorption, 2013, 19, 997-1006.	3.0	3
24	Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 203-213.	1.7	45
25	Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 313-321.	1.7	12
26	HPLC determination of glyoxal in aldehyde solution with 3-methyl-2-benzothiazolinone hydrazone. Frontiers of Chemical Science and Engineering, 2011, 5, 117-121.	4.4	4
27	Effects of the SAPO-11 synthetic process on dehydration of ethanol to ethylene. Frontiers of Chemical Science and Engineering, 2011, 5, 60-66.	4.4	10