Benjamin D Britton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955365/publications.pdf

Version: 2024-02-01

27 papers 1,161 citations

430874 18 h-index 677142 22 g-index

28 all docs 28 docs citations

times ranked

28

1307 citing authors

#	Article	IF	CITATIONS
1	High Performance AEM Water Electrolysis with Aemion® Membranes. ECS Meeting Abstracts, 2022, MA2022-01, 1723-1723.	0.0	O
2	How Electrochemical Impedance Spectroscopy Helps Drive Innovation in Fully Hydrocarbon, Reinforced Polymer Electrolyte Membranes. ECS Meeting Abstracts, 2022, MA2022-01, 1405-1405.	0.0	0
3	Hydrocarbon-based Pemionâ,,¢ proton exchange membrane fuel cells with state-of-the-art performance. Sustainable Energy and Fuels, 2021, 5, 3687-3699.	4.9	34
4	The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+â,,¢). Journal of Materials Chemistry A, 2021, 9, 15744-15754.	10.3	35
5	Performance and stability comparison of Aemionâ,,¢ and Aemion+â,,¢ membranes for vanadium redox flow batteries. RSC Advances, 2021, 11, 13077-13084.	3.6	7
6	Stabilization of Li–S batteries with a lean electrolyte ⟨i⟩via⟨ i⟩ ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder. Sustainable Energy and Fuels, 2020, 4, 1180-1190.	4.9	15
7	Improving the water management in anion-exchange membrane fuel cells <i>via</i> ultra-thin, directly deposited solid polymer electrolyte. RSC Advances, 2020, 10, 8645-8652.	3.6	35
8	30 μm thin hexamethyl-p-terphenyl poly(benzimidazolium) anion exchange membrane for vanadium redox flow batteries. Electrochemistry Communications, 2019, 102, 37-40.	4.7	24
9	Doped, Defectâ€Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1800184.	3.7	37
10	Sulfophenylated Terphenylene Copolymer Membranes and Ionomers. ChemSusChem, 2018, 11, 4033-4043.	6.8	39
11	Fuel Cell Catalyst Layers and Membrane-Electrode Assemblies Containing Multiblock Poly(arylene) Tj ETQq1 1 0.7 2018, 165, F891-F897.	784314 rgl 2.9	gBT /Overlock 9
12	Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochemistry Communications, 2017, 77, 71-75.	4.7	78
13	Tridoped Reduced Graphene Oxide as a Metalâ€Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. Advanced Sustainable Systems, 2017, 1, 1600038.	5.3	50
14	Highly Stable, Low Gas Crossover, Protonâ€Conducting Phenylated Polyphenylenes. Angewandte Chemie - International Edition, 2017, 56, 9058-9061.	13.8	83
15	Cationic Polyelectrolytes, Stable in 10 M KOH _{aq} at 100 °C. ACS Macro Letters, 2017, 6, 1089-1093.	4.8	140
16	Highly Stable, Low Gas Crossover, Protonâ€Conducting Phenylated Polyphenylenes. Angewandte Chemie, 2017, 129, 9186-9189.	2.0	24
17	The reasons for the high power density of fuel cells fabricated with directly deposited membranes. Journal of Power Sources, 2016, 326, 170-175.	7.8	55
18	The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers. Journal of the Electrochemical Society, 2016, 163, F353-F358.	2.9	60

#	Article	IF	Citations
19	A completely spray-coated membrane electrode assembly. Electrochemistry Communications, 2016, 70, 65-68.	4.7	39
20	Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy and Environmental Science, 2016, 9, 2130-2142.	30.8	213
21	Effect of ketone versus sulfone groups on the properties of poly(arylene ether)-based proton exchange membranes. Journal of Materials Science, 2016, 51, 9805-9821.	3.7	16
22	Stability and Efficiency Improvement of Sulfonated Poly(para-phenylene): Study of Random Co-Polymer for Proton Exchange Membrane for Fuel Cell. ECS Meeting Abstracts, 2016, , .	0.0	0
23	Enduring Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2016, , .	0.0	0
24	High Performance, High Catalyst-Efficiency Hydrocarbon Fuel Cells. ECS Meeting Abstracts, 2016, , .	0.0	0
25	Alcohol-Soluble, Sulfonated Poly(arylene ether)s: Investigation of Hydrocarbon Ionomers for Proton Exchange Membrane Fuel Cell Catalyst Layers. Journal of the Electrochemical Society, 2015, 162, F513-F518.	2.9	29
26	Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. Electrochemistry Communications, 2015, 60, 168-171.	4.7	54
27	Structurally-Defined, Sulfo-Phenylated, Oligophenylenes and Polyphenylenes. Journal of the American Chemical Society, 2015, 137, 12223-12226.	13.7	85