
Benjamin D Britton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1955365/publications.pdf Version: 2024-02-01

RENIAMIN D RRITTON

#	Article	IF	CITATIONS
1	Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy and Environmental Science, 2016, 9, 2130-2142.	30.8	213
2	Cationic Polyelectrolytes, Stable in 10 M KOH _{aq} at 100 °C. ACS Macro Letters, 2017, 6, 1089-1093.	4.8	140
3	Structurally-Defined, Sulfo-Phenylated, Oligophenylenes and Polyphenylenes. Journal of the American Chemical Society, 2015, 137, 12223-12226.	13.7	85
4	Highly Stable, Low Gas Crossover, Proton onducting Phenylated Polyphenylenes. Angewandte Chemie - International Edition, 2017, 56, 9058-9061.	13.8	83
5	Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochemistry Communications, 2017, 77, 71-75.	4.7	78
6	The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers. Journal of the Electrochemical Society, 2016, 163, F353-F358.	2.9	60
7	The reasons for the high power density of fuel cells fabricated with directly deposited membranes. Journal of Power Sources, 2016, 326, 170-175.	7.8	55
8	Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition. Electrochemistry Communications, 2015, 60, 168-171.	4.7	54
9	Tridoped Reduced Graphene Oxide as a Metalâ€Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. Advanced Sustainable Systems, 2017, 1, 1600038.	5.3	50
10	A completely spray-coated membrane electrode assembly. Electrochemistry Communications, 2016, 70, 65-68.	4.7	39
11	Sulfophenylated Terphenylene Copolymer Membranes and Ionomers. ChemSusChem, 2018, 11, 4033-4043.	6.8	39
12	Doped, Defectâ€Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1800184.	3.7	37
13	Improving the water management in anion-exchange membrane fuel cells <i>via</i> ultra-thin, directly deposited solid polymer electrolyte. RSC Advances, 2020, 10, 8645-8652.	3.6	35
14	The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+â,,¢). Journal of Materials Chemistry A, 2021, 9, 15744-15754.	10.3	35
15	Hydrocarbon-based Pemionâ"¢ proton exchange membrane fuel cells with state-of-the-art performance. Sustainable Energy and Fuels, 2021, 5, 3687-3699.	4.9	34
16	Alcohol-Soluble, Sulfonated Poly(arylene ether)s: Investigation of Hydrocarbon Ionomers for Proton Exchange Membrane Fuel Cell Catalyst Layers. Journal of the Electrochemical Society, 2015, 162, F513-F518.	2.9	29
17	Highly Stable, Low Gas Crossover, Proton onducting Phenylated Polyphenylenes. Angewandte Chemie, 2017, 129, 9186-9189.	2.0	24
18	30â€Î¼m thin hexamethyl-p-terphenyl poly(benzimidazolium) anion exchange membrane for vanadium redox flow batteries. Electrochemistry Communications, 2019, 102, 37-40.	4.7	24

#	Article	IF	CITATIONS
19	Effect of ketone versus sulfone groups on the properties of poly(arylene ether)-based proton exchange membranes. Journal of Materials Science, 2016, 51, 9805-9821.	3.7	16
20	Stabilization of Li–S batteries with a lean electrolyte <i>via</i> ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder. Sustainable Energy and Fuels, 2020, 4, 1180-1190.	4.9	15
21	Fuel Cell Catalyst Layers and Membrane-Electrode Assemblies Containing Multiblock Poly(arylene) Tj ETQq1 1 0.7 2018, 165, F891-F897.	'84314 rgl 2.9	3T /Overloci 9
22	Performance and stability comparison of Aemionâ"¢ and Aemion+â"¢ membranes for vanadium redox flow batteries. RSC Advances, 2021, 11, 13077-13084.	3.6	7
23	Stability and Efficiency Improvement of Sulfonated Poly(para-phenylene): Study of Random Co-Polymer for Proton Exchange Membrane for Fuel Cell. ECS Meeting Abstracts, 2016, , .	0.0	0
24	Enduring Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2016, , .	0.0	0
25	High Performance, High Catalyst-Efficiency Hydrocarbon Fuel Cells. ECS Meeting Abstracts, 2016, , .	0.0	0
26	High Performance AEM Water Electrolysis with Aemion® Membranes. ECS Meeting Abstracts, 2022, MA2022-01, 1723-1723.	0.0	0
27	How Electrochemical Impedance Spectroscopy Helps Drive Innovation in Fully Hydrocarbon, Reinforced Polymer Electrolyte Membranes. ECS Meeting Abstracts, 2022, MA2022-01, 1405-1405.	0.0	0