Daniele Perrone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954938/publications.pdf

Version: 2024-02-01

393982 377514 1,246 53 19 34 citations h-index g-index papers 54 54 54 683 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Seismic performance of non-structural elements during the 2016 Central Italy earthquake. Bulletin of Earthquake Engineering, 2019, 17, 5655-5677.	2.3	121
2	Current Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthquake Spectra, 2019, 35, 1927-1952.	1.6	113
3	Seismic assessment and loss estimation of existing school buildings in Italy. Engineering Structures, 2018, 168, 142-162.	2.6	102
4	Rapid visual screening for seismic evaluation of RC hospital buildings. Structures, 2015, 3, 57-70.	1.7	58
5	Seismic retrofit options for non-structural building partition walls: Impact on loss estimation and cost-benefit analysis. Engineering Structures, 2018, 161, 8-27.	2.6	58
6	Performance-Based Seismic Design of Nonstructural Building Elements. Journal of Earthquake Engineering, 2021, 25, 237-269.	1.4	56
7	Consistent floor response spectra for performanceâ€based seismic design of nonstructural elements. Earthquake Engineering and Structural Dynamics, 2020, 49, 261-284.	2.5	52
8	A prioritization RVS methodology for the seismic risk assessment of RC school buildings. International Journal of Disaster Risk Reduction, 2020, 51, 101807.	1.8	50
9	Non-linear behaviour of masonry infilled RC frames: Influence of masonry mechanical properties. Engineering Structures, 2017, 150, 875-891.	2.6	41
10	Probabilistic estimation of floor response spectra in masonry infilled reinforced concrete building portfolio. Engineering Structures, 2020, 202, 109842.	2.6	40
11	Evaluation of the infill influence on the elastic period of existing RC frames. Engineering Structures, 2016, 123, 419-433.	2.6	32
12	Assessing seismic risk in typical Italian school buildings: From in-situ survey to loss estimation. International Journal of Disaster Risk Reduction, 2020, 44, 101448.	1.8	31
13	System Identification and Seismic Assessment Modeling Implications for Italian School Buildings. Journal of Performance of Constructed Facilities, 2019, 33, .	1.0	29
14	Numerical Modelling and Validation of the Response of Masonry Infilled RC Frames Using Experimental Testing Results. Buildings, 2020, 10, 182.	1.4	28
15	Automated seismic design of non-structural elements with building information modelling. Automation in Construction, 2017, 84, 166-175.	4.8	27
16	Displacement-Based Framework for Simplified Seismic Loss Assessment. Journal of Earthquake Engineering, 2020, 24, 1-22.	1.4	26
17	Seismic retrofit of existing school buildings in Italy: Performance evaluation and loss estimation. Engineering Structures, 2020, 225, 111243.	2.6	24
18	Simplified seismic assessment of infilled RC frame structures. Bulletin of Earthquake Engineering, 2020, 18, 1579-1611.	2.3	23

#	Article	IF	CITATIONS
19	Fragility functions and floor spectra of RC masonry infilled frames: influence of mechanical properties of masonry infills. Bulletin of Earthquake Engineering, 2018, 16, 6105-6130.	2.3	22
20	Seismic Demand on Acceleration-Sensitive Nonstructural Components in Viscously Damped Braced Frames. Journal of Structural Engineering, 2020, 146, .	1.7	21
21	Experimental seismic response evaluation of suspended piping restraint installations. Bulletin of Earthquake Engineering, 2020, 18, 1499-1524.	2.3	19
22	A rational approach to the conversion of FEMA P-58 seismic repair costs to Europe. Earthquake Spectra, 2020, 36, 1607-1618.	1.6	19
23	Optimal seismic retrofitting of existing buildings considering environmental impact. Engineering Structures, 2022, 250, 113391.	2.6	19
24	Probabilistic models for structures with bilinear demandâ€intensity relationships. Earthquake Engineering and Structural Dynamics, 2019, 48, 253-268.	2.5	18
25	Shakeâ€table tests of innovative drift sensitive nonstructural elements in a lowâ€damage structural system. Earthquake Engineering and Structural Dynamics, 2021, 50, 2398-2420.	2.5	18
26	Seismic Vulnerability Assessment of the Urban Building Environment in Nablus, Palestine. International Journal of Architectural Heritage, 2018, 12, 1196-1215.	1.7	16
27	Effect of cyclic loading protocols on the experimental seismic performance evaluation of suspended piping restraint installations. International Journal of Pressure Vessels and Piping, 2018, 166, 61-71.	1.2	15
28	Seismic Acceleration and Displacement Demand Profiles of Non-Structural Elements in Hospital Buildings. Buildings, 2020, 10, 243.	1.4	14
29	Estimation of Seismic Expected Annual Losses for Multi-Span Continuous RC Bridge Portfolios Using a Component-Level Approach. Journal of Earthquake Engineering, 2022, 26, 2985-3011.	1.4	14
30	Story loss functions for seismic design and assessment: Development of tools and application. Earthquake Spectra, 2021, 37, 2813-2839.	1.6	14
31	Nonlinear static characterisation of masonry-infilled RC building portfolios accounting for variability of infill properties. Bulletin of Earthquake Engineering, 2021, 19, 2597-2641.	2.3	12
32	Seismic performance assessment of piping systems in bare and infilled RC buildings. Soil Dynamics and Earthquake Engineering, 2021, 149, 106897.	1.9	12
33	Seismic acceleration demand and fragility assessment of storage tanks installed in industrial steel moment-resisting frame structures. Soil Dynamics and Earthquake Engineering, 2022, 152, 107016.	1.9	12
34	Seismic numerical modelling of suspended piping trapeze restraint installations based on component testing. Bulletin of Earthquake Engineering, 2020, 18, 3247-3283.	2.3	11
35	A probabilistic strong floor motion duration model for seismic performance assessment of nonâ€structural building elements. Earthquake Engineering and Structural Dynamics, 2021, 50, 4161-4179.	2.5	9
36	Parametric study and prediction models of the seismic response of single-degree-of-freedom structural systems equipped with Maxwell material fluid viscous dampers. Structures, 2022, 43, 388-406.	1.7	9

3

#	Article	IF	Citations
37	MID 1.1: Database for Characterization of the Lateral Behavior of Infilled Frames. Journal of Structural Engineering, 2021, 147, .	1.7	8
38	Seismic Resilience Assessment in Optimally Integrated Retrofitting of Existing School Buildings in Italy. Buildings, 2022, 12, 845.	1.4	8
39	SHAKE TABLE TESTING FOR SEISMIC PERFORMANCE EVALUATION OF NON-STRUCTURAL ELEMENTS. , 2019, , .		6
40	A Framework for the Quantification of Non-Structural Seismic Performance Factors. Journal of Earthquake Engineering, 2022, 26, 8468-8494.	1.4	6
41	Calibrated Equivalent Viscous Damping for Direct Displacement-Based Seismic Design of Suspended Piping Trapeze Restraint Installations. Journal of Earthquake Engineering, 2022, 26, 8063-8091.	1.4	5
42	Towards Seismic Design of Nonstructural Elements: Italian Code-Compliant Acceleration Floor Response Spectra. Advances in Civil Engineering, 2021, 2021, 1-18.	0.4	4
43	MID1.0: Masonry Infilled RC Frame Experimental Database. Lecture Notes in Civil Engineering, 2018, , 147-160.	0.3	3
44	Critical Assessment of Estimation Procedures for Floor Acceleration Demands in Steel Moment-Resisting Frames. Frontiers in Built Environment, 2019, 5, .	1.2	3
45	System Identification and Structural Modelling of Italian School Buildings. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 301-303.	0.3	3
46	Influence of Masonry Infills on the Shear Forces of RC Framed Structures. Applied Mechanics and Materials, 0, 847, 361-368.	0.2	2
47	Influence of the Modelling Approach on the Failure Modes of RC Infilled Frames Under Seismic Actions. Lecture Notes in Civil Engineering, 2020, , 69-81.	0.3	2
48	Development of Fragility Curves for Multi-Span RC Bridges using Generalized Pushover Analysis. IABSE Symposium Report, 2019, , .	0.0	1
49	Calibrated Equivalent Viscous Damping for Direct Displacement Based Seismic Design of Pallet-Type Steel Storage Racks. Journal of Earthquake Engineering, 2023, 27, 1012-1046.	1.4	1
50	Probabilistic Seismic Risk Assessment of School Buildings. Lecture Notes in Civil Engineering, 2021, , 15-38.	0.3	0
51	LARGE-SCALE SIMPLIFIED SEISMIC RISK MAPPING OF RESIDENTIAL BUILDINGS THROUGH RAPID VISUAL SCREENING. , 2019, , .		0
52	Simplified modelling and pushover analysis of infilled frame structures accounting for strut flexibility. Earthquake Engineering and Structural Dynamics, 2022, 51, 1383-1409.	2.5	0
53	Detailed Structural Characterization of Existing RC Buildings for Seismic Exposure Modelling of the Lisbon Area. Buildings, 2022, 12, 642.	1.4	0