## Marcelo A Aizen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954807/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Behavioural responses by a bumble bee to competition with a nicheâ€constructing congener. Journal of<br>Animal Ecology, 2022, 91, 580-592.                                                                          | 2.8  | 6         |
| 2  | Does climate change influence the current and future projected distribution of an endangered<br>species? The case of the southernmost bumblebee in the world. Journal of Insect Conservation, 2022,<br>26, 257-269. | 1.4  | 7         |
| 3  | Increasing pollen production at high latitudes across animalâ€pollinated flowering plants. Global<br>Ecology and Biogeography, 2022, 31, 940-953.                                                                   | 5.8  | 11        |
| 4  | Bumblebee floral neighbors promote nectar robbing in a hummingbird-pollinated plant species in<br>Patagonia. Arthropod-Plant Interactions, 2022, 16, 183-190.                                                       | 1.1  | 1         |
| 5  | Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220086.                              | 2.6  | 17        |
| 6  | Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts. Diversity and Distributions, 2022, 28, 1404-1415.                 | 4.1  | 9         |
| 7  | Large-scale monoculture reduces honey yield: The case of soybean expansion in Argentina.<br>Agriculture, Ecosystems and Environment, 2021, 306, 107203.                                                             | 5.3  | 19        |
| 8  | Ecological correlates of crop yield growth and interannual yield variation at a global scale. Web<br>Ecology, 2021, 21, 15-43.                                                                                      | 1.6  | 6         |
| 9  | Intentional and unintentional selection during plant domestication: herbivore damage, plant<br>defensive traits and nutritional quality of fruit and seed crops. New Phytologist, 2021, 231, 1586-1598.             | 7.3  | 34        |
| 10 | The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Functional Ecology, 2021, 35, 1998-2011.                                          | 3.6  | 9         |
| 11 | A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature<br>Ecology and Evolution, 2021, 5, 1453-1461.                                                                      | 7.8  | 173       |
| 12 | Exotic insect pollinators and native pollination systems. Plant Ecology, 2021, 222, 1075-1088.                                                                                                                      | 1.6  | 5         |
| 13 | Negative impacts of dominance on bee communities: Does the influence of invasive honey bees differ from native bees?. Ecology, 2021, 102, e03526.                                                                   | 3.2  | 19        |
| 14 | Pollination advantage of rare plants unveiled. Nature, 2021, 597, 638-639.                                                                                                                                          | 27.8 | 1         |
| 15 | Plant–pollinator conservation from the perspective of systems-ecology. Current Opinion in Insect<br>Science, 2021, 47, 154-161.                                                                                     | 4.4  | 8         |
| 16 | Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment, 2021, 320, 107573.                                                                          | 5.3  | 16        |
| 17 | Global trends in the number and diversity of managed pollinator species. Agriculture, Ecosystems and Environment, 2021, 322, 107653.                                                                                | 5.3  | 72        |
| 18 | Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 2021, 4,<br>114-123.                                                                                                      | 6.8  | 246       |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pollination success increases with plant diversity in high-Andean communities. Scientific Reports, 2021, 11, 22107.                                                                     | 3.3  | 5         |
| 20 | Invasive bees and their impact on agriculture. Advances in Ecological Research, 2020, 63, 49-92.                                                                                        | 2.7  | 42        |
| 21 | Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.     | 2.7  | 56        |
| 22 | Patchâ€level facilitation fosters highâ€Andean plant diversity at regional scales. Journal of Vegetation<br>Science, 2020, 31, 1133-1143.                                               | 2.2  | 13        |
| 23 | Bees increase crop yield in an alleged pollinator-independent almond variety. Scientific Reports, 2020, 10, 3177.                                                                       | 3.3  | 31        |
| 24 | Crop pollination management needs flowerâ€visitor monitoring and target values. Journal of Applied<br>Ecology, 2020, 57, 664-670.                                                       | 4.0  | 57        |
| 25 | The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.                                                            | 4.0  | 39        |
| 26 | Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.     | 9.5  | 206       |
| 27 | Facilitation of vascular plants by cushion mosses in high-Andean communities. Alpine Botany, 2019, 129, 137-148.                                                                        | 2.4  | 19        |
| 28 | A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019,<br>5, eaax0121.                                                                  | 10.3 | 524       |
| 29 | Plant–plant interactions promote alpine diversification. Evolutionary Ecology, 2019, 33, 195-209.                                                                                       | 1.2  | 14        |
| 30 | Contrasting responses of plants and pollinators to woodland disturbance. Austral Ecology, 2019, 44, 1040-1051.                                                                          | 1.5  | 16        |
| 31 | The dynamic mosaic phenotypes of flowering plants. New Phytologist, 2019, 224, 1021-1034.                                                                                               | 7.3  | 24        |
| 32 | Reproductive assurance weakens pollinator-mediated selection on flower size in an annual mixed-mating species. Annals of Botany, 2019, 123, 1067-1077.                                  | 2.9  | 11        |
| 33 | Pollination efficiency of artificial and bee pollination practices in kiwifruit. Scientia Horticulturae, 2019, 246, 1017-1021.                                                          | 3.6  | 36        |
| 34 | Uncoupled Evolution of Male and Female Cone Sizes in an Ancient Conifer Lineage. International<br>Journal of Plant Sciences, 2019, 180, 72-80.                                          | 1.3  | 10        |
| 35 | Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, 2019, 56, 100-106. | 4.0  | 99        |
| 36 | An overlooked plant–parakeet mutualism counteracts human overharvesting on an endangered tree.<br>Royal Society Open Science, 2018, 5, 171456.                                          | 2.4  | 11        |

| #  | Article                                                                                                                                                                                                             | IF               | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 37 | The costs and benefits of pollinator dependence: empirically based simulations predict raspberry fruit quality. Ecological Applications, 2018, 28, 1215-1222.                                                       | 3.8              | 11                  |
| 38 | Risks to pollinators and pollination from invasive alien species. Nature Ecology and Evolution, 2018, 2, 16-25.                                                                                                     | 7.8              | 113                 |
| 39 | Phenological match drives pollenâ€mediated gene flow in a temporally dimorphic tree. Plant Biology,<br>2018, 20, 93-100.                                                                                            | 3.8              | 10                  |
| 40 | Coevolution Slows the Disassembly of Mutualistic Networks. American Naturalist, 2018, 192, 490-502.                                                                                                                 | 2.1              | 16                  |
| 41 | Scale-dependent effects of conspecific flower availability on pollination quantity and quality in an invasive shrub. Oecologia, 2018, 188, 501-513.                                                                 | 2.0              | 10                  |
| 42 | The interplay between ovule number, pollination and resources as determinants of seed set in a modular plant. PeerJ, 2018, 6, e5384.                                                                                | 2.0              | 15                  |
| 43 | Honey bee impact on plants and wild bees in natural habitats. Ecosistemas, 2018, 27, 60-69.                                                                                                                         | 0.4              | 21                  |
| 44 | Invasive bumble bees reduce nectar availability for honey bees by robbing raspberry flower buds. Basic and Applied Ecology, 2017, 19, 26-35.                                                                        | 2.7              | 31                  |
| 45 | Disruption of Pollination Services by Invasive Pollinator Species. , 2017, , 203-220.                                                                                                                               |                  | 23                  |
| 46 | Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms. Evolutionary Ecology, 2017, 31, 585-602.                                                                    | 1.2              | 23                  |
| 47 | The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1                                                                                                         | l 0.78431<br>1.9 | 4 rgBT /Over<br>186 |
| 48 | The impact of honey bee colony quality on crop yield and farmers' profit in apples and pears.<br>Agriculture, Ecosystems and Environment, 2017, 248, 153-161.                                                       | 5.3              | 76                  |
| 49 | The southernmost parakeet might be enhancing pollination of a dioecious conifer. Ecology, 2017, 98, 2969-2971.                                                                                                      | 3.2              | 8                   |
| 50 | Global decline of bumblebees is phylogenetically structured and inversely related to species range<br>size and pathogen incidence. Proceedings of the Royal Society B: Biological Sciences, 2017, 284,<br>20170204. | 2.6              | 95                  |
| 51 | Consequences of disperser behaviour for seedling establishment of a mistletoe species. Austral<br>Ecology, 2017, 42, 900-907.                                                                                       | 1.5              | 13                  |
| 52 | Deconstructing pollinator community effectiveness. Current Opinion in Insect Science, 2017, 21, 98-104.                                                                                                             | 4.4              | 29                  |
| 53 | Pollination unpredictability and ovule number in a South-Andean Proteaceae along a rainfall gradient.<br>Australian Journal of Botany, 2016, 64, 8.                                                                 | 0.6              | 5                   |
| 54 | The population ecology of male gametophytes: the link between pollination and seed production.<br>Ecology Letters, 2016, 19, 497-509.                                                                               | 6.4              | 36                  |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation.<br>Ecology Letters, 2016, 19, 29-36.                                                                | 6.4  | 46        |
| 56 | Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.                                                                                                             | 27.8 | 1,204     |
| 57 | Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases.<br>Scientific Reports, 2016, 6, 31153.                                                             | 3.3  | 92        |
| 58 | A common framework for identifying linkage rules across different types of interactions. Functional Ecology, 2016, 30, 1894-1903.                                                                      | 3.6  | 161       |
| 59 | Evaluating the effects of pollinatorâ€mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecology Letters, 2016, 19, 576-586. | 6.4  | 94        |
| 60 | Diverse ecological relations of male gametophyte populations in stylar environments. American<br>Journal of Botany, 2016, 103, 484-497.                                                                | 1.7  | 23        |
| 61 | EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.                                  | 4.0  | 136       |
| 62 | Extinction debt of a common shrub in a fragmented landscape. Journal of Applied Ecology, 2015, 52,<br>580-589.                                                                                         | 4.0  | 27        |
| 63 | Structural–functional approach to identify post-disturbance recovery indicators in forests from northwestern Patagonia: A tool to prevent state transitions. Ecological Indicators, 2015, 52, 85-95.   | 6.3  | 19        |
| 64 | Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid. Acta<br>Oecologica, 2015, 62, 32-39.                                                                    | 1.1  | 6         |
| 65 | Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 2015, 29, 299-307.                                                                             | 3.6  | 619       |
| 66 | Hot spots of mutualistic networks. Journal of Animal Ecology, 2015, 84, 407-413.                                                                                                                       | 2.8  | 32        |
| 67 | Invasive conifers reduce seed set of a native Andean cedar through heterospecific pollination competition. Biological Invasions, 2015, 17, 1055-1067.                                                  | 2.4  | 5         |
| 68 | Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. Journal of Applied Ecology, 2014, 51, 1603-1612.                                                        | 4.0  | 94        |
| 69 | The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.                                        | 1.9  | 178       |
| 70 | Genetic diversity and population structure of the mistletoe Tristerix corymbosus (Loranthaceae).<br>Plant Systematics and Evolution, 2014, 300, 153-162.                                               | 0.9  | 6         |
| 71 | From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.                                                                   | 4.0  | 363       |
| 72 | When mutualism goes bad: densityâ€dependent impacts of introduced bees on plant reproduction. New Phytologist, 2014, 204, 322-328.                                                                     | 7.3  | 95        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Rapid ecological replacement of a native bumble bee by invasive species. Frontiers in Ecology and the Environment, 2013, 11, 529-534.                                                                  | 4.0  | 188       |
| 74 | Node-by-node disassembly of a mutualistic interaction web driven by species introductions.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16503-16507. | 7.1  | 56        |
| 75 | Birds as mediators of passive restoration during early post-fire recovery. Biological Conservation, 2013, 158, 342-350.                                                                                | 4.1  | 60        |
| 76 | Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339,<br>1608-1611.                                                                                       | 12.6 | 1,767     |
| 77 | Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biological Invasions, 2013, 15, 489-494.                                                                                                 | 2.4  | 112       |
| 78 | Specialization and Rarity Predict Nonrandom Loss of Interactions from Mutualist Networks. Science, 2012, 335, 1486-1489.                                                                               | 12.6 | 237       |
| 79 | Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas. PLoS ONE, 2012, 7, e30968.                                                            | 2.5  | 20        |
| 80 | Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet,<br><i>Embothrium coccineum</i> (Proteaceae). Oikos, 2012, 121, 471-480.                                  | 2.7  | 44        |
| 81 | Endozoochory decreases environmental filtering imposed to seedlings. Journal of Vegetation Science, 2012, 23, 677-689.                                                                                 | 2.2  | 12        |
| 82 | Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.          | 7.1  | 310       |
| 83 | Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends in Plant Science, 2011, 16, 4-12.                                                                 | 8.8  | 278       |
| 84 | Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south-Andean mistletoe. Ecography, 2011, 34, 318-326.                                              | 4.5  | 58        |
| 85 | Comparative nectar-foraging behaviors and efficiencies of an alien and a native bumble bee. Biological Invasions, 2011, 13, 2901-2909.                                                                 | 2.4  | 12        |
| 86 | Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodiversity and Conservation, 2010, 19, 257-274.                     | 2.6  | 50        |
| 87 | Reproductive interactions mediated by flowering overlap in a temperate hummingbird-plant assemblage. Oikos, 2010, 119, 696-706.                                                                        | 2.7  | 29        |
| 88 | Floral adaptation and diversification under pollen limitation. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2010, 365, 529-543.                                          | 4.0  | 138       |
| 89 | Direct effects of habitat area on interaction diversity in pollination webs. Ecological Applications, 2010, 20, 1491-1497.                                                                             | 3.8  | 82        |
| 90 | Pollinator shortage and global crop yield. Communicative and Integrative Biology, 2009, 2, 37-39.                                                                                                      | 1.4  | 66        |

6

| #   | Article                                                                                                                                                                                       | IF               | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 91  | Geographic variation in the growth of domesticated honey-bee stocks. Communicative and Integrative Biology, 2009, 2, 464-466.                                                                 | 1.4              | 23           |
| 92  | The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination. Current Biology, 2009, 19, 915-918.                                                   | 3.9              | 794          |
| 93  | How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 2009, 103, 1579-1588.                                                    | 2.9              | 499          |
| 94  | The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta<br>Oecologica, 2009, 35, 8-13.                                                                    | 1.1              | 82           |
| 95  | A metaâ€analysis of bees' responses to anthropogenic disturbance. Ecology, 2009, 90, 2068-2076.                                                                                               | 3.2              | 739          |
| 96  | Do leaf margins of the temperate forest flora of southern South America reflect a warmer past?.<br>Global Ecology and Biogeography, 2008, 17, 164-174.                                        | 5.8              | 28           |
| 97  | Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but<br>Increasing Pollinator Dependency. Current Biology, 2008, 18, 1572-1575.                    | 3.9              | 490          |
| 98  | Population characteristics of Dromiciops gliroides (Philippi, 1893), an endemic marsupial of the temperate forest of Patagonia. Mammalian Biology, 2008, 73, 74-76.                           | 1.5              | 21           |
| 99  | SUGAR PREFERENCES OF THE GREEN-BACKED FIRECROWN HUMMINGBIRD ( <i>SEPHANOIDES) Tj ETQq1 1 0.78</i>                                                                                             | 4314 rgBT<br>1.4 | -/Qyerlock 1 |
| 100 | Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. Forest Ecology and Management, 2008, 255, 1575-1583. | 3.2              | 105          |
| 101 | Invasive Mutualists Erode Native Pollination Webs. PLoS Biology, 2008, 6, e31.                                                                                                                | 5.6              | 378          |
| 102 | Proximity to forest edge does not affect crop production despite pollen limitation. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 907-913.                              | 2.6              | 38           |
| 103 | Uncoupled Geographical Variation between Leaves and Flowers in a South-Andean Proteaceae. Annals of Botany, 2008, 102, 79-91.                                                                 | 2.9              | 33           |
| 104 | Habitat fragmentation disrupts a plant-disperser mutualism in the temperate forest of South America.<br>Biological Conservation, 2007, 139, 195-202.                                          | 4.1              | 122          |
| 105 | EXPANDING THE LIMITS OF THE POLLEN-LIMITATION CONCEPT: EFFECTS OF POLLEN QUANTITY AND QUALITY. Ecology, 2007, 88, 271-281.                                                                    | 3.2              | 409          |
| 106 | Pollination Requirements of Pigmented Grapefruit (Citrus paradisi Macf.) from Northwestern<br>Argentina. Crop Science, 2007, 47, 1143-1150.                                                   | 1.8              | 11           |
| 107 | Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.                         | 6.4              | 1,096        |
| 108 | Flowering phenologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement?. Ecography, 2006, 29, 357-366.                | 4.5              | 89           |

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecology Letters, 2006, 9, 968-980.                               | 6.4  | 823       |
| 110 | Invasive mutualisms and the structure of plant-pollinator interactions in the temperate forests of north-west Patagonia, Argentina. Journal of Ecology, 2006, 94, 171-180. | 4.0  | 153       |
| 111 | Nectar Concentration and Composition of 26 Species from the Temperate Forest of South America.<br>Annals of Botany, 2006, 97, 413-421.                                     | 2.9  | 154       |
| 112 | Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest. Journal of Applied Ecology, 2005, 43, 18-27.                    | 4.0  | 146       |
| 113 | Breeding system of Tristerix corymbosus (Loranthaceae), a winter-flowering mistletoe from the southern Andes. Australian Journal of Botany, 2005, 53, 357.                 | 0.6  | 27        |
| 114 | Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation?. Journal of Ecology, 2004, 92, 717-719.      | 4.0  | 133       |
| 115 | ASYMMETRIC SPECIALIZATION: A PERVASIVE FEATURE OF PLANT–POLLINATOR INTERACTIONS. Ecology, 2004, 85, 1251-1257.                                                             | 3.2  | 343       |
| 116 | Down-Facing Flowers, Hummingbirds and Rain. Taxon, 2003, 52, 675.                                                                                                          | 0.7  | 37        |
| 117 | NULL MODEL ANALYSES OF SPECIALIZATION IN PLANT–POLLINATOR INTERACTIONS. Ecology, 2003, 84, 2493-2501.                                                                      | 3.2  | 186       |
| 118 | INFLUENCES OF ANIMAL POLLINATION AND SEED DISPERSAL ON WINTER FLOWERING IN A TEMPERATE MISTLETOE. Ecology, 2003, 84, 2613-2627.                                            | 3.2  | 119       |
| 119 | Selective Fruit Maturation and Seedling Performance in Acacia caven (Fabaceae). International Journal of Plant Sciences, 2002, 163, 809-813.                               | 1.3  | 20        |
| 120 | Historia natural y conservación de los mutualismos planta-animal del bosque templado de Sudamérica<br>austral. Revista Chilena De Historia Natural, 2002, 75, 79.          | 1.2  | 93        |
| 121 | Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter?. Journal of Vegetation Science, 2002, 13, 885-892.            | 2.2  | 150       |
| 122 | Title is missing!. Biological Invasions, 2002, 4, 87-100.                                                                                                                  | 2.4  | 98        |
| 123 | Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter?. Journal of Vegetation Science, 2002, 13, 885.                | 2.2  | 36        |
| 124 | Why do flowers of a hummingbird-pollinated mistletoe face down?. Functional Ecology, 2001, 15, 782-790.                                                                    | 3.6  | 49        |
| 125 | FLOWER SEX RATIO, POLLINATOR ABUNDANCE, AND THE SEASONAL POLLINATION DYNAMICS OF A PROTANDROUS PLANT. Ecology, 2001, 82, 127-144.                                          | 3.2  | 65        |
| 126 | Mistletoe seed dispersal by a marsupial. Nature, 2000, 408, 929-930.                                                                                                       | 27.8 | 146       |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Species associations and nurse plant effects in patches of highâ€Andean vegetation. Journal of<br>Vegetation Science, 1999, 10, 357-364.                                                                         | 2.2 | 147       |
| 128 | Early reproductive failure increases nectar production and pollination success of late flowers in south Andean Alstroemeria aurea. Oecologia, 1999, 120, 235-241.                                                | 2.0 | 21        |
| 129 | Selective fruit filling in relation to pollen load size in Alstroemeria aurea (Alstroemeriaceae). Sexual<br>Plant Reproduction, 1998, 11, 166-170.                                                               | 2.2 | 6         |
| 130 | Flowering-Shoot Defoliation Affects Pollen Grain Size and Postpollination Pollen Performance in Alstroemeria aurea. Ecology, 1998, 79, 2133.                                                                     | 3.2 | 15        |
| 131 | FLOWERING-SHOOT DEFOLIATION AFFECTS POLLEN GRAIN SIZE AND POSTPOLLINATION POLLEN<br>PERFORMANCE INALSTROEMERIA AUREA. Ecology, 1998, 79, 2133-2142.                                                              | 3.2 | 37        |
| 132 | Sex differential nectar secretion in protandrous Alstroemeria aurea (Alstroemeriaceae): is<br>production altered by pollen removal and receipt?. American Journal of Botany, 1998, 85, 245-252.                  | 1.7 | 62        |
| 133 | Influence of local floral density and sex ratio on pollen receipt and seed output: empirical and<br>experimental results in dichogamous Alstroemeria aurea (Alstroemeriaceae). Oecologia, 1997, 111,<br>404-412. | 2.0 | 41        |
| 134 | Effects of acorn size on seedling survival and growth in <i>Quercus rubra</i> following simulated spring freeze. Canadian Journal of Botany, 1996, 74, 308-314.                                                  | 1.1 | 33        |
| 135 | Effects of pollinia removal and insertion on flower longevity inChloraea alpina (Orchidaceae).<br>Evolutionary Ecology, 1996, 10, 653-660.                                                                       | 1.2 | 33        |
| 136 | Nectar Production and Pollination in Alstroemeria aurea: Responses to Level and Pattern of<br>Flowering Shoot Defoliation. Oikos, 1996, 76, 312.                                                                 | 2.7 | 26        |
| 137 | Does Pollen Viability Decrease with Aging? A Cross-Population Examination in Austrocedrus chilensis<br>(Cupressaceae). International Journal of Plant Sciences, 1995, 156, 227-231.                              | 1.3 | 17        |
| 138 | Within and among flower sex-phase distribution in <i>Alstroemeria aurea</i> (Alstroemeriaceae).<br>Canadian Journal of Botany, 1995, 73, 1986-1994.                                                              | 1.1 | 35        |
| 139 | Leaf phenology and herbivory along a temperature gradient: a spatial test of the phenological window hypothesis. Journal of Vegetation Science, 1995, 6, 543-550.                                                | 2.2 | 41        |
| 140 | Habitat Fragmentation, Native Insect Pollinators, and Feral Honey Bees in Argentine 'Chaco Serrano'. ,<br>1994, 4, 378-392.                                                                                      |     | 370       |
| 141 | Forest Fragmentation, Pollination, and Plant Reproduction in a Chaco Dry Forest, Argentina. Ecology, 1994, 75, 330-351.                                                                                          | 3.2 | 636       |
| 142 | Self-Pollination Shortens Flower Lifespan in Portulaca umbraticola H.B.K. (Portulacaceae).<br>International Journal of Plant Sciences, 1993, 154, 412-415.                                                       | 1.3 | 23        |
| 143 | Latitudinal trends in acorn size in eastern North American species of <i>Quercus</i> . Canadian<br>Journal of Botany, 1992, 70, 1218-1222.                                                                       | 1.1 | 45        |
| 144 | AMONG―AND WITHINâ€FLOWER COMPARISONS OF POLLEN TUBE GROWTH FOLLOWING SELF―AND<br>CROSSâ€POLLINATIONS IN DIANTHUS CHINENSIS (CARYOPHYLLACEAE). American Journal of Botany, 1990, 77,<br>671-676.                  | 1.7 | 75        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Floral sex ratios in scrub oak (Quercus ilicifolia) vary with microtopography and stem height.<br>Canadian Journal of Botany, 1990, 68, 1364-1368.                                       | 1.1 | 15        |
| 146 | Acorn Size and Geographical Range in the North American Oaks (Quercus L.). Journal of Biogeography,<br>1990, 17, 327.                                                                    | 3.0 | 86        |
| 147 | Among- and Within-Flower Comparisons of Pollen Tube Growth Following Self- and<br>Cross-Pollinations in Dianthus chinensis (Caryophyllaceae). American Journal of Botany, 1990, 77, 671. | 1.7 | 35        |
| 148 | Hardwood Competition and Weevil Infestation in White Pine: Lessons from a Long-Term Study.<br>Northern Journal of Applied Forestry, 1989, 6, 186-188.                                    | 0.5 | 1         |
| 149 | Fit of logspecies-logarea regression lines to nonequilibrium archipelagos: A simulation approach.<br>Ecological Modelling, 1989, 47, 265-273.                                            | 2.5 | 2         |