Liang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954481/publications.pdf

Version: 2024-02-01

			100601	1	04191
	117	5,241	38		69
	papers	citations	h-index		g-index
ľ					
	121	121	121		6675
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Synthesis of Fluoride-Substituted Layered Perovskites ZnMoO ₄ with an Enhanced Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2023, 15, 43251-43258.	4.0	4
2	MOF/PCP-based Electrocatalysts for the Oxygen Reduction Reaction. Electrochemical Energy Reviews, 2022, 5, 32-81.	13.1	47
3	Fully-automated SPE coupled to UHPLC-MS/MS method for multiresidue analysis of 26 trace antibiotics in environmental waters: SPE optimization and method validation. Environmental Science and Pollution Research, 2022, 29, 16973-16987.	2.7	8
4	Ibuprofen degradation by a synergism of facet-controlled MIL-88B(Fe) and persulfate under simulated visible light. Journal of Colloid and Interface Science, 2022, 612, 1-12.	5.0	69
5	Sustainable Underwater Solar Conversion Systems with Enhanced Electrode Environmental Compatibility. ACS Sustainable Chemistry and Engineering, 2022, 10, 935-945.	3.2	1
6	Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma. Pharmaceuticals, 2022, 15, 157.	1.7	16
7	Dissecting of the Deterioration in Eating Quality for Erect Panicle (Ep) Type High Yield Japonica Super Rice in Northest China. Rice, 2022, 15, 15.	1.7	2
8	Effect of Co-catalyst CdS on the Photocatalytic Performance of ZnMoO4 for Hydrogen Production. Catalysis Surveys From Asia, 2022, 26, 174-182.	1.0	6
9	Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB. Environmental Science & Environmental Scie	4.6	23
10	Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. Science of the Total Environment, 2022, 829, 154581.	3.9	7
11	A simple judgment method for joint action of antibacterial agents on bacterial resistance. MethodsX, 2022, 9, 101700.	0.7	3
12	In-situ chemical attenuation of pharmaceutically active compounds using CaO2: Influencing factors, mechanistic modeling, and cooperative inactivation of water-borne microbial pathogens. Environmental Research, 2022, 212, 113531.	3.7	2
13	Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. Environmental Science & Eamp; Technology, 2022, 56, 8438-8448.	4.6	21
14	Insights into the photocatalytic activation persulfate by visible light over ReS2/MIL-88B(Fe) for highly efficient degradation of ibuprofen: Combination of experimental and theoretical study. Separation and Purification Technology, 2022, 297, 121545.	3.9	59
15	Visible-light-assisted persulfate activation by SnS2/MIL-88B(Fe) Z-scheme heterojunction for enhanced degradation of ibuprofen. Journal of Colloid and Interface Science, 2022, 625, 965-977.	5.0	60
16	Current rice models underestimate yield losses from shortâ€ŧerm heat stresses. Global Change Biology, 2021, 27, 402-416.	4.2	24
17	CuS co-catalyst modified hydrogenated SrTiO ₃ nanoparticles as an efficient photocatalyst for H ₂ evolution. Dalton Transactions, 2021, 50, 7768-7775.	1.6	15
18	Synthesis of ZnIn ₂ S ₄ @Co ₃ S ₄ particles derived from ZIF-67 for photocatalytic hydrogen production. RSC Advances, 2021, 11, 9296-9302.	1.7	15

#	Article	IF	CITATIONS
19	Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1877-1893.	1.9	16
20	Morphology Controllable Fabrication of Tungsten Oxide for Enhanced Photocatalytic Performance. Catalysis Surveys From Asia, 2021, 25, 334-345.	1.0	8
21	Algae-inspired multifunctional ocean solar-energy conversion chain enabled by coordination polymers. Cell Reports Physical Science, 2021, 2, 100466.	2.8	9
22	Preparation of CdS/Cs0.68Ti1.83O4 heterojunction for promoted photocatalytic hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 876, 160097.	2.8	13
23	Boron nitride nanosheets decorated MIL-53(Fe) for efficient synergistic ibuprofen photocatalytic degradation by persulfate activation. Journal of Colloid and Interface Science, 2021, 603, 270-281.	5.0	79
24	Effect of Layers on the Photocatalytic Hydrogen Evolution in Dion-Jacobson Layered-Tantalum Perovskites Dalton Transactions, 2021, 50, 16076-16083.	1.6	6
25	A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. Journal of Materials Chemistry A, 2021, 9, 8685-8691.	5.2	12
26	ZIF-67-derived flower-like ZnIn ₂ S ₄ @CoS ₂ heterostructures for photocatalytic hydrogen production. New Journal of Chemistry, 2021, 45, 20289-20295.	1.4	12
27	Rationally Designed CdS-Based Ternary Heterojunctions: A Case of 1T-MoS2 in CdS/TiO2 Photocatalyst. Nanomaterials, 2021, 11, 38.	1.9	3
28	Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution. Chemical Engineering Journal, 2020, 382, 122810.	6.6	51
29	Optimization of the facet structure of cobalt oxide catalysts for enhanced hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 1040-1047.	2.1	19
30	Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Materials Research Bulletin, 2020, 132, 111000.	2.7	81
31	Boosting catalytic degradation efficiency by incorporation of MIL-53(Fe) with Ti3C2Tx nanosheeets. Journal of Molecular Liquids, 2020, 311, 113201.	2.3	31
32	Core–Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. Nano Letters, 2020, 20, 4464-4471.	4.5	75
33	Pollution characteristics and underlying ecological risks of primary semi-volatile organic compounds (SVOCs) in urban watersheds of Shanghai, China. Environmental Science and Pollution Research, 2020, 27, 27708-27720.	2.7	10
34	Boosting Visibleâ€Light Photocatalytic Performance for CO ₂ Reduction via Hydroxylated Graphene Quantum Dots Sensitized MILâ€101(Fe). Advanced Materials Interfaces, 2020, 7, 2000468.	1.9	33
35	Ni(OH) ₂ -modified SrTiO ₃ for enhanced photocatalytic hydrogen evolution reactions. New Journal of Chemistry, 2020, 44, 7194-7199.	1.4	4
36	Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): Comparison to fish. Journal of Hazardous Materials, 2020, 396, 122590.	6.5	21

#	Article	IF	Citations
37	Solid solution ZnW _{1â^'x} Mo _x O ₄ for enhanced photocatalytic H ₂ evolution. New Journal of Chemistry, 2020, 44, 19796-19801.	1.4	6
38	Efficient photocatalytic reactions of Cr(<scp>vi</scp>) reduction and ciprofloxacin and RhB oxidation with Sn(<scp>ii</scp>)-doped BiOBr. Catalysis Science and Technology, 2019, 9, 5953-5961.	2.1	18
39	MIL-53(Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chemical Engineering Journal, 2019, 374, 975-982.	6.6	130
40	Distribution characteristics and ecological evaluation of chlorobenzene compounds in surface sediment of the Maowei Sea, Guangxi, China. Environmental Monitoring and Assessment, 2019, 191, 309.	1.3	2
41	Graphene-Encapsulated CuP ₂ : A Promising Anode Material with High Reversible Capacity and Superior Rate-Performance for Sodium-Ion Batteries. Nano Letters, 2019, 19, 2575-2582.	4.5	60
42	An Autoâ€Switchable Dualâ€Mode Seawater Energy Extraction System Enabled by Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 7431-7434.	7.2	31
43	An Autoâ€Switchable Dualâ€Mode Seawater Energy Extraction System Enabled by Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 7509-7512.	1.6	0
44	MoS2/ZIF-8 Hybrid Materials for Environmental Catalysis: Solar-Driven Antibiotic-Degradation Engineering. Engineering, 2019, 5, 755-767.	3.2	85
45	Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating. Journal of Materials Chemistry A, 2019, 7, 25369-25376.	5.2	35
46	A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in Highâ€Rate and Longâ€Cycling Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 1412-1416.	7.2	92
47	In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chemical Engineering Journal, 2019, 359, 254-264.	6.6	157
48	Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water. Ecotoxicology and Environmental Safety, 2018, 152, 98-103.	2.9	43
49	Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Applied Catalysis B: Environmental, 2018, 228, 103-112.	10.8	183
50	Perfluorinated compounds in surface waters of Shanghai, China: Source analysis and risk assessment. Ecotoxicology and Environmental Safety, 2018, 149, 88-95.	2.9	76
51	Radiolytic decomposition of sulfonamide antibiotics: Implications to the kinetics, mechanisms and toxicity. Separation and Purification Technology, 2018, 202, 259-265.	3.9	18
52	g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Materials Research Bulletin, 2018, 99, 349-358.	2.7	299
53	Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices. Chemosphere, 2018, 190, 184-190.	4.2	44
54	Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221, 119-128.	10.8	366

#	Article	IF	CITATIONS
55	Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs in human serum from Shanghai, China: a study on their presence and correlations. Environmental Science and Pollution Research, 2018, 25, 3518-3526.	2.7	29
56	Synergistic effects between hydroxyl radicals and hydrated electrons on strengthening decomposition of an s-triazine compound: A combined experimental and theoretical study. Chemosphere, 2018, 195, 365-371.	4.2	2
57	Antifouling behavior of self-renewal acrylate boron polymers with pyridine-diphenylborane side chains. New Journal of Chemistry, 2018, 42, 19908-19916.	1.4	15
58	MOFsâ€Based Heterogeneous Catalysts: New Opportunities for Energyâ€Related CO ₂ Conversion. Advanced Energy Materials, 2018, 8, 1801587.	10.2	158
59	Integration of plasmonic effect into spindle-shaped MIL-88A(Fe): Steering charge flow for enhanced visible-light photocatalytic degradation of ibuprofen. Chemical Engineering Journal, 2018, 349, 603-612.	6.6	169
60	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	2.7	121
61	The Influence of Carbon Nitride Nanosheets Doping on the Crystalline Formation of MILâ€88B(Fe) and the Photocatalytic Activities. Small, 2018, 14, e1802045.	5.2	94
62	A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. Journal of Materials Science, 2018, 53, 15051-15063.	1.7	32
63	Synthesis of highly efficient Co3O4 catalysts by heat treatment ZIF-67 for CO oxidation. Journal of Sol-Gel Science and Technology, 2018, 88, 163-171.	1.1	20
64	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
65	Semivolatile organic compounds in surface microlayer and subsurface water of Dianshan Lake, Shanghai, China: implications for accumulation and interrelationship. Environmental Science and Pollution Research, 2017, 24, 6572-6580.	2.7	9
66	Benzophenone-type UV filters in surface waters: An assessment of profiles and ecological risks in Shanghai, China. Ecotoxicology and Environmental Safety, 2017, 141, 235-241.	2.9	31
67	Mechanism of degradation of a nitrogenous heterocycle induced by a reductive radical: decomposition of a sym-triazine ring. Physical Chemistry Chemical Physics, 2017, 19, 9354-9357.	1.3	7
68	Analysis of perfluorinated compounds in human serum from the general population in Shanghai by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chemosphere, 2017, 168, 100-105.	4.2	64
69	EB degradation of perfluorooctanoic acid and perfluorooctane sulfonate in aqueous solution. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	1.3	34
70	Hexabromocyclododecane and tetrabromobisphenol A in tree bark from different functional areas of Shanghai, China: levels and spatial distributions. Environmental Sciences: Processes and Impacts, 2017, 19, 1346-1354.	1.7	5
71	Pollution patterns and characteristics of perfluorinated compounds in surface water adjacent potential industrial emission categories of Shanghai, China. Ecotoxicology and Environmental Safety, 2017, 145, 659-664.	2.9	18
72	Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: A promising strategy for water remediation. Applied Catalysis B: Environmental, 2017, 219, 241-248.	10.8	135

#	Article	IF	CITATIONS
73	Aquatic photolysis of hydroxylated polybromodiphenyl ethers under direct UV irradiation: a case study of 2′-HO-BDE-68. Environmental Science and Pollution Research, 2017, 24, 14409-14416.	2.7	5
74	Metal organic framework g-C 3 N 4 /MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Applied Surface Science, 2017, 425, 107-116.	3.1	361
75	Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Applied Catalysis B: Environmental, 2017, 205, 587-596.	10.8	87
76	Occurrence and profiles of polybrominated diphenyl ethers (PBDEs) in riverine sediments of Shanghai: a combinative study with human serum from the locals. Environmental Geochemistry and Health, 2017, 39, 729-738.	1.8	14
77	Synthesis of zinc-based acrylate copolymers and their marine antifouling application. RSC Advances, 2017, 7, 40020-40027.	1.7	34
78	Occurrence of Hexabromocyclododecane in soil and road dust from mixed-land-use areas of Shanghai, China, and its implications for human exposure. Science of the Total Environment, 2016, 559, 282-290.	3.9	19
79	CO2 sequestration through mineral carbonation of waste phosphogypsum using the technique of membrane electrolysis. Environmental Earth Sciences, 2016, 75, 1.	1.3	13
80	Facile Synthesis of Silver Bromide-Based Nanomaterials and Their Efficient and Rapid Selective Adsorption Mechanisms Toward Anionic Dyes. ACS Sustainable Chemistry and Engineering, 2016, 4, 4617-4625.	3.2	44
81	Occurrence, fate, and risk assessment of selected endocrine disrupting chemicals in wastewater treatment plants and receiving river of Shanghai, China. Environmental Science and Pollution Research, 2016, 23, 25442-25450.	2.7	28
82	Distribution, fate, and risk assessment of antibiotics in five wastewater treatment plants in Shanghai, China. Environmental Science and Pollution Research, 2016, 23, 18055-18063.	2.7	44
83	Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicology and Environmental Safety, 2016, 132, 132-139.	2.9	92
84	Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: Efficiency and mechanism. Chemical Engineering Journal, 2016, 295, 484-493.	6.6	48
85	Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. Journal of Hazardous Materials, 2016, 312, 298-306.	6.5	89
86	Aquatic photolysis of carbamazepine by UV/H2O2 and UV/Fe(II) processes. Research on Chemical Intermediates, 2015, 41, 7015-7028.	1.3	16
87	Effect of water on carbonation of mineral aerosol surface models of kaolinite: a density functional theory study. Environmental Earth Sciences, 2015, 73, 7053-7060.	1.3	12
88	Polybrominated diphenyl ethers (PBDEs) in soil and outdoor dust from a multi-functional area of Shanghai: Levels, compositional profiles and interrelationships. Chemosphere, 2015, 118, 87-95.	4.2	66
89	Radiation induced degradation of antiepileptic drug primidone in aqueous solution. Chemical Engineering Journal, 2015, 270, 66-72.	6.6	39
90	Electron beam induced degradation of atrazine in aqueous solution. Chemical Engineering Journal, 2015, 275, 374-380.	6.6	38

#	Article	IF	Citations
91	Hexabromocyclododecane diastereoisomers in surface sediments from river drainage basins of Shanghai, China: occurrence, distribution, and mass inventory. Environmental Science and Pollution Research, 2015, 22, 11993-12000.	2.7	15
92	Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates. Environmental Earth Sciences, 2015, 73, 6881-6890.	1.3	28
93	Degradation of Anticonvulsant Drug Primidone in Aqueous Solution by UV Photooxidation Processes. Environmental Engineering Science, 2015, 32, 436-444.	0.8	9
94	UV-Based Oxidation Processes for Removal of Clopyralid: Optimal Conditions, Efficiency, and By-Products. Environmental Engineering Science, 2015, 32, 998-1006.	0.8	2
95	ITS sequence variation and concerted evolution in the natural hybrid species <i>Malus toringoides</i> . Nordic Journal of Botany, 2015, 33, 109-119.	0.2	8
96	Vibration analysis of a multi-span rotating ring with ray tracing method. Wave Motion, 2015, 52, 91-102.	1.0	7
97	Aquatic photolysis of florfenicol and thiamphenicol under direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chemical Engineering Journal, 2015, 260, 826-834.	6.6	90
98	Insecticidal, Fumigant, and Repellent Activities of Sweet Wormwood Oil and Its Individual Components Against Red Imported Fire Ant Workers (Hymenoptera: Formicidae). Journal of Insect Science, 2014, 14, .	0.6	26
99	New insights into the hybrid origin of <i>Malus toringoides</i> and its close relatives based on a singleâ€copy nuclear gene <i>Sbel</i> and three chloroplast fragments. Journal of Systematics and Evolution, 2014, 52, 477-486.	1.6	4
100	Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils. Earthquake Engineering and Engineering Vibration, 2014, 13, 171-180.	1.1	16
101	Hexabromocyclododecanes in surface sediments from Shanghai, China: Spatial distribution, seasonal variation and diastereoisomer-specific profiles. Chemosphere, 2014, 111, 304-311.	4.2	17
102	Radical-induced destruction of diethyl phthalate in aqueous solution: kinetics, spectral properties, and degradation efficiencies studies. Research on Chemical Intermediates, 2013, 39, 3727-3737.	1.3	11
103	Polybrominated Diphenyl Ethers in Human Hair from the College Environment: Comparison with Indoor Dust. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 377-381.	1.3	24
104	Polybrominated diphenyl ethers in surface sediments from principal watersheds of Shanghai, China: levels, distribution, influencing factors, and risk assessment. Environmental Science and Pollution Research, 2013, 20, 2651-2660.	2.7	29
105	Free vibration analysis of planar rotating rings by wave propagation. Journal of Sound and Vibration, 2013, 332, 4979-4997.	2.1	33
106	Seasonal and spatial distribution of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environmental Monitoring and Assessment, 2013, 185, 3149-3161.	1.3	50
107	Radiation-induced Degradation of Diethylstilbestrol by Electron Beam Irradiation. Asian Journal of Chemistry, 2013, 25, 191-196.	0.1	0
108	Determination of Phthalate Esters in Sediment Using Accelerated Solvent Extraction and Gas Chromatography-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2013, 41, 1315.	0.9	0

#	Article	IF	CITATIONS
109	Photocatalytic Degradation of 4-Bromodiphenyl Ether Using TiO2/MWCNTs Composites. , 2012, , .		1
110	Kinetics and mechanisms studies on dimethyl phthalate degradation in aqueous solutions by pulse radiolysis and electron beam radiolysis. Radiation Physics and Chemistry, 2011, 80, 420-425.	1.4	43
111	Electron Beam Radiolysis of Diethyl Phthalate in Aqueous Solutions. Environmental Engineering Science, 2011, 28, 257-262.	0.8	4
112	Electron Beam Radiolysis of 17beta-Estradiol in Aqueous Solutions. , 2011, , .		2
113	Research on Photolysis of Steroid Estrogens in Aquatic System. Advanced Materials Research, 2011, 343-344, 241-245.	0.3	1
114	Decomposition mechanism of chloramphenicol under electron beam irradiation. Journal of Shanghai University, 2010, 14, 286-291.	0.1	1
115	Photolytical Property of Dibutyl phthalate (DBP). , 2009, , .		1
116	Radiation of Bromobenzene Solution by Ultraviolet and Electron Beam. , 2009, , .		0
117	Study on Design of Tunnel Section for Danba Diversion Tunnel. Applied Mechanics and Materials, 0, 501-504, 1732-1735.	0.2	O