Ana Sofia Fajardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1954189/publications.pdf

Version: 2024-02-01

516710 610901 25 951 16 24 citations g-index h-index papers 26 26 26 939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 302, 120844.	20.2	130
2	Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality. Current Opinion in Electrochemistry, 2020, 22, 9-16.	4.8	108
3	Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 2015, 275, 331-341.	12.7	102
4	Earth-abundant elements a sustainable solution for electrocatalytic reduction of nitrate. Applied Catalysis B: Environmental, 2021, 281, 119465.	20.2	98
5	Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. Journal of Electroanalytical Chemistry, 2017, 785, 180-189.	3.8	75
6	Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 2018, 204, 548-555.	8.2	69
7	Effect of anodic materials on solar photoelectro-Fenton process using a diazo dye as a model contaminant. Chemosphere, 2019, 225, 880-889.	8.2	48
8	Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems. Journal of Electroanalytical Chemistry, 2017, 801, 30-37.	3.8	45
9	Electrochemical abatement of amaranth dye solutions using individual or an assembling of flow cells with Ti/Pt and Ti/Pt-SnSb anodes. Separation and Purification Technology, 2017, 179, 194-203.	7.9	34
10	Treatment of a Synthetic Phenolic Mixture by Electrocoagulation Using Al, Cu, Fe, Pb, and Zn as Anode Materials. Industrial & Engineering Chemistry Research, 2014, 53, 18339-18345.	3.7	28
11	Effect of electrochemically-driven technologies on the treatment of endocrine disruptors in synthetic and real urban wastewater. Electrochimica Acta, 2021, 376, 138034.	5.2	28
12	Effect of surface functionalization of Fe3O4 nano-enabled electrodes on the electrochemical reduction of nitrate. Separation and Purification Technology, 2022, 282, 119771.	7.9	27
13	Electrochemical Technologies for Detecting and Degrading Benzoquinone Using Diamond Films. ChemElectroChem, 2019, 6, 4383-4390.	3.4	24
14	Treatment of Amaranth dye in aqueous solution by using one cell or two cells in series with active and non-active anodes. Electrochimica Acta, 2016, 210, 96-104.	5.2	23
15	Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO2 anodes. Environmental Science and Pollution Research, 2017, 24, 7521-7533.	5.3	22
16	Obtaining high-added value products from the technical cashew-nut shell liquid using electrochemical oxidation with BDD anodes. Separation and Purification Technology, 2020, 250, 117099.	7.9	20
17	Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al ₂ O ₃ . Environmental Technology (United Kingdom), 2013, 34, 301-311.	2.2	16
18	A sequential process to treat a cashew-nut effluent: Electrocoagulation plus electrochemical oxidation. Journal of Electroanalytical Chemistry, 2019, 834, 79-85.	3.8	15

#	Article	IF	Citations
19	Indirect Electrochemical Oxidation by Using Ozone, Hydrogen Peroxide, and Ferrate., 2018,, 165-192.		8
20	Mass transfer and residence time distribution in an electrochemical cell with an air-diffusion electrode: Effect of air pressure and mesh promoters. Electrochimica Acta, 2021, 378, 138131.	5. 2	8
21	Highly porous seeding-free boron-doped ultrananocrystalline diamond used as high-performance anode for electrochemical removal of carbaryl from water. Chemosphere, 2022, 305, 135497.	8.2	7
22	Cashew-Nut Effluent: An Anodic Oxidation Treatment Using a Batch Recirculation Reactor with BDD Anode. Journal of the Electrochemical Society, 2018, 165, E659-E664.	2.9	6
23	Electrocatalytic Behavior of Mediators during Anodic Oxidation of Tartaric Acid at Platinum Electrodes. Journal of the Electrochemical Society, 2017, 164, E375-E378.	2.9	5
24	Dimensionally Stable Anode Based Sensor for Urea Determination via Linear Sweep Voltammetry. Sensors, 2021, 21, 3450.	3.8	4
25	Sustainable Development: Use of Agricultural Waste Materials for Vanillic Acid Recovery from Wastewater. Sustainability, 2022, 14, 2818.	3.2	1