List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1953879/-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,464 276 43 70 h-index g-index citations papers 6.82 8,133 304 2.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
276	Boundary stabilization and disturbance rejection for an unstable time fractional diffusion-wave equation. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2022 , 28, 7	1	
275	Order reduction-based uniform approximation of exponential stability for one-dimensional Schridinger equation. <i>Systems and Control Letters</i> , 2022 , 160, 105136	2.4	0
274	Output regulation for a heat equation with unknown exosystem. <i>Automatica</i> , 2022 , 138, 110159	5.7	1
273	Output regulation for 1-D reaction-diffusion equation with a class of time-varying disturbances from exosystem. <i>Automatica</i> , 2022 , 141, 110274	5.7	1
272	Boundary Stability Criterion for a Nonlinear Axially Moving Beam. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	O
271	Robust output regulation for Timoshenko beam equation with two inputs and two outputs. <i>International Journal of Robust and Nonlinear Control</i> , 2021 , 31, 1245-1269	3.6	1
270	Robust output regulation of 1-d wave equation. IFAC Journal of Systems and Control, 2021, 16, 100140	0.9	2
269	Robust tracking error feedback control for output regulation of Euler B ernoulli beam equation. <i>Mathematics of Control, Signals, and Systems</i> , 2021 , 33, 707	1.3	1
268	Backstepping Active Disturbance Rejection Control for Lower Triangular Nonlinear Systems With Mismatched Stochastic Disturbances. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 1-15	7.3	3
267	Boundary control and observation to inverse coefficient problem for heat equation with unknown source and initial value. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	1
266	Absolute boundary stabilization for an axially moving Kirchhoff beam. <i>Automatica</i> , 2021 , 129, 109667	5.7	5
265	Finite dimensional control of multichannel systems. <i>Journal of Differential Equations</i> , 2021 , 296, 213-24	12.1	
264	Output tracking for a radiative density optical communication system with unknown disturbance. <i>IFAC Journal of Systems and Control</i> , 2021 , 17, 100164	0.9	
263	Uniformly semidiscretized approximation for exact observability and controllability of one-dimensional Euler B ernoulli beam. <i>Systems and Control Letters</i> , 2021 , 156, 105013	2.4	0
262	Robust Tracking Error Feedback Control for a One-Dimensional Schrodinger Equation. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	1
261	HIFuzzy Control for Nonlinear Fourth-Order Parabolic Equation Subject to Input Delay. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 1-9	7.3	0
260	A semi-discrete finite difference method to uniform stabilization of wave equation with local viscosity. <i>IFAC Journal of Systems and Control</i> , 2020 , 13, 100100	0.9	1

(2019-2020)

259	Dynamic and static feedback control for second order infinite-dimensional systems. <i>Asian Journal of Control</i> , 2020 , 23, 1431	1.7	О
258	Robust error based non-collocated output tracking control for a heat equation. <i>Automatica</i> , 2020 , 114, 108818	5.7	14
257	Stability and regularity transmission for coupled beam and wave equations through boundary weak connections. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2020 , 26, 73	1	1
256	Robust Output Tracking for an Euler-Bernoulli Beam with Boundary Displacement Error Measurement Only 2020 ,		2
255	2020,		2
254	Boundary stabilization and disturbance rejection for a time fractional order diffusion-wave equation. <i>IFAC-PapersOnLine</i> , 2020 , 53, 3695-3700	0.7	O
253	Output Feedback Stabilization for a Class of First-Order Equation Setting of Collocated Well-Posed Linear Systems With Time Delay in Observation. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 2612	-256918	5
252	. IEEE Transactions on Automatic Control, 2020 , 65, 1841-1854	5.9	11
251	Asymptotic stabilization for a wave equation with periodic disturbance. <i>IMA Journal of Mathematical Control and Information</i> , 2020 , 37, 894-917	1.1	0
250	Stabilization and regularity transmission of a Schrdinger equation through boundary connections with a Kelvin-Voigt damped beam equation. <i>ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik</i> , 2020 , 100, e201900013	1	1
249	A New Semidiscretized Order Reduction Finite Difference Scheme for Uniform Approximation of One-Dimensional Wave Equation. <i>SIAM Journal on Control and Optimization</i> , 2020 , 58, 2256-2287	1.9	5
248	Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems. <i>Nonlinear Dynamics</i> , 2020 , 101, 935-959	5	15
247	Output feedback stabilization for 1-D wave equation with variable coefficients and non-collocated observation. <i>Systems and Control Letters</i> , 2020 , 145, 104780	2.4	1
246	Fuzzy Observer for 2-D Parabolic Equation With Output Time Delay. <i>IEEE Transactions on Fuzzy Systems</i> , 2020 , 1-1	8.3	3
245	Extended state observer for MIMO nonlinear systems with stochastic uncertainties. <i>International Journal of Control</i> , 2020 , 93, 424-436	1.5	7
244	Active disturbance rejection control to MIMO nonlinear systems with stochastic uncertainties: approximate decoupling and output-feedback stabilisation. <i>International Journal of Control</i> , 2020 , 93, 1408-1427	1.5	11
243	. IEEE Transactions on Automatic Control, 2020 , 65, 1940-1955	5.9	8
242	Arbitrary decay for boundary stabilization of Schrdinger equation subject to unknown disturbance by Lyapunov approach. <i>IFAC Journal of Systems and Control</i> , 2019 , 7, 100033	0.9	О

241	Mittag-Leffler stabilization for an unstable time-fractional anomalous diffusion equation with boundary control matched disturbance. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 4384-4401	3.6	19
240	Performance boundary output tracking for a wave equation with control unmatched disturbance. <i>European Journal of Control</i> , 2019 , 50, 30-40	2.5	5
239	Observers and observability for uncertain nonlinear systems: A necessary and sufficient condition. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 2960-2977	3.6	6
238	The BangBang Property of Time-Varying Optimal Time Control for Null Controllable Heat Equation. <i>Journal of Optimization Theory and Applications</i> , 2019 , 182, 588-605	1.6	
237	Control of Wave and Beam PDEs. Communications and Control Engineering, 2019,	0.6	13
236	Riesz Basis Generation: Comparison Method. Communications and Control Engineering, 2019, 197-312	0.6	
235	Riesz Basis Generation: Green Function Approach. Communications and Control Engineering, 2019, 439-	50 46	
234	Bases in Hilbert Spaces. <i>Communications and Control Engineering</i> , 2019 , 27-195	0.6	
233	Riesz Basis Generation: Dual-Basis Approach. Communications and Control Engineering, 2019, 313-438	0.6	1
232	Stabilization of Coupled Systems Through Boundary Connection. <i>Communications and Control Engineering</i> , 2019 , 505-592	0.6	
231	Boundary output tracking for an Euler B ernoulli beam equation with unmatched perturbations from a known exosystem. <i>Automatica</i> , 2019 , 109, 108507	5.7	12
230	Stabilization for infinite-dimensional linear systems with bounded control and time delayed observation. <i>Systems and Control Letters</i> , 2019 , 134, 104532	2.4	3
229	A novel semi-discrete scheme preserving uniformly exponential stability for an Euler B ernoulli beam. <i>Systems and Control Letters</i> , 2019 , 134, 104518	2.4	2
228	On convergence of active disturbance rejection control for a class of uncertain stochastic nonlinear systems. <i>International Journal of Control</i> , 2019 , 92, 1103-1116	1.5	16
227	Stabilization of ODE with hyperbolic equation actuator subject to boundary control matched disturbance. <i>International Journal of Control</i> , 2019 , 92, 12-26	1.5	10
226	Event-Based Reliable Dissipative Filtering for TB Fuzzy Systems With Asynchronous Constraints. IEEE Transactions on Fuzzy Systems, 2018, 26, 2089-2098	8.3	83
225	Boundary Feedback Stabilization for an Unstable Time Fractional Reaction Diffusion Equation. <i>SIAM Journal on Control and Optimization</i> , 2018 , 56, 75-101	1.9	37
224	Approximate decoupling and output tracking for MIMO nonlinear systems with mismatched uncertainties via ADRC approach. <i>Journal of the Franklin Institute</i> , 2018 , 355, 3873-3894	4	18

223	Nonfragile Exponential Synchronization of Delayed Complex Dynamical Networks With Memory Sampled-Data Control. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 118-128	10.3	156
222	Simultaneous identification of damping coefficient and initial value for PDEs from boundary measurement. <i>International Journal of Control</i> , 2018 , 91, 1508-1521	1.5	O
221	Further Results on Stabilization of Chaotic Systems Based on Fuzzy Memory Sampled-Data Control. <i>IEEE Transactions on Fuzzy Systems</i> , 2018 , 26, 1040-1045	8.3	130
220	A Novel Extended State Observer for Output Tracking of MIMO Systems With Mismatched Uncertainty. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 211-218	5.9	85
219	Performance output tracking for one-dimensional wave equation subject to unmatched general disturbance and non-collocated control. <i>European Journal of Control</i> , 2018 , 39, 39-52	2.5	39
218	Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance. <i>Automatica</i> , 2018 , 96, 1-10	5.7	30
217	Event-triggered dissipative synchronization for Markovian jump neural networks with general transition probabilities. <i>International Journal of Robust and Nonlinear Control</i> , 2018 , 28, 3893-3908	3.6	34
216	Observer Design and Exponential Stabilization for Wave Equation in Energy Space by Boundary Displacement Measurement Only. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 1438-1444	5.9	18
215	A nonlinear extended state observer based on fractional power functions. <i>Automatica</i> , 2017 , 81, 286-29	16 5.7	75
214	Active disturbance rejection control approach to output-feedback stabilization of lower triangular nonlinear systems with stochastic uncertainty. <i>International Journal of Robust and Nonlinear Control</i> , 2017, 27, 2773-2797	3.6	13
213	Active disturbance rejection control: Old and new results. <i>Annual Reviews in Control</i> , 2017 , 44, 238-248	10.3	63
212	Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty. <i>Journal of Differential Equations</i> , 2017 , 263, 2213	- 2 246	22
211	A New Active Disturbance Rejection Control to Output Feedback Stabilization for a One-Dimensional Anti-Stable Wave Equation With Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 3774-3787	5.9	71
2 10	Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control. <i>Systems and Control Letters</i> , 2017 , 100, 21-31	2.4	53
209	Exponential Stability of the Monotubular Heat Exchanger Equation with Time Delay in Boundary Observation. <i>Mathematical Problems in Engineering</i> , 2017 , 2017, 1-8	1.1	
208	New unknown input observer and output feedback stabilization for uncertain heat equation. <i>Automatica</i> , 2017 , 86, 1-10	5.7	33
207	Comments on Btabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control[[Automatica 63 (2016) 302B10]. <i>Automatica</i> , 2017 , 83, 398	5.7	1
206	Numerical solution to optimal feedback control by dynamic programming approach: A local approximation algorithm. <i>Journal of Systems Science and Complexity</i> , 2017 , 30, 782-802	1	5

205	Simultaneous identification of diffusion coefficient, spacewise dependent source and initial value for one-dimensional heat equation. <i>Mathematical Methods in the Applied Sciences</i> , 2017 , 40, 3552-3565	2.3	8
204	Results on stability of linear systems with time varying delay. <i>IET Control Theory and Applications</i> , 2017 , 11, 129-134	2.5	42
203	Non-fragile HIFiltering for delayed TakagiBugeno fuzzy systems with randomly occurring gain variations. <i>Fuzzy Sets and Systems</i> , 2017 , 316, 99-116	3.7	36
202	Disturbance estimator based output feedback stabilizing control for an Euler-Bernoulli beam equation with boundary uncertainty 2017 ,		3
201	Output Feedback Stabilization for Multi-Dimensional Wave Equation with Boundary Control Matched Disturbance * *This work was supported by the National Natural Science Foundation of China, the National Research Foundation of South Africa, and the Israel Science Foundation (grant no. 800/14) IFAC-PapersOnLine, 2017, 50, 6793-6798	0.7	
200	A new extended state observer for output tracking of nonlinear MIMO systems 2017 ,		3
199	Well-posedness and exact controllability of fourth-order Schrdinger equation with hinged boundary control and collocated observation. <i>Mathematics of Control, Signals, and Systems</i> , 2016 , 28, 1	1.3	2
198	Optimal State Estimation for Non-Time Invertible Evolutionary Systems. <i>SIAM Journal on Control and Optimization</i> , 2016 , 54, 2754-2786	1.9	
197	The Active Disturbance Rejection Control 2016 , 155-290		O
196	The Tracking Differentiator (TD) 2016 , 53-91		2
195	Extended State Observer 2016 , 93-154		2
194	ADRC for Lower Triangular Nonlinear Systems 2016 , 291-339		
193	Boundary control method to identification of elastic modulus of string equation from Neumann-Dirichlet map. <i>Journal of Systems Science and Complexity</i> , 2016 , 29, 1212-1225	1	
192	Optimal actuator location of minimum norm controls for heat equation with general controlled domain. <i>Journal of Differential Equations</i> , 2016 , 261, 3588-3614	2.1	3
191	Output feedback stabilization for multi-dimensional Kirchhoff plate with general corrupted boundary observation. <i>European Journal of Control</i> , 2016 , 28, 38-48	2.5	7
190	Distributed disturbance estimator and application to stabilization for multi-dimensional wave equation with corrupted boundary observation. <i>Automatica</i> , 2016 , 66, 25-33	5.7	9
189	Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance. <i>Automatica</i> , 2016 , 68, 194-202	5.7	42
188	On Convergence of Nonlinear Active Disturbance Rejection Control for SISO Nonlinear Systems. Journal of Dynamical and Control Systems, 2016 , 22, 385-412	1.1	51

(2015-2016)

Stabilisation of unstable cascaded heat partial differential equation system subject to boundary disturbance. <i>IET Control Theory and Applications</i> , 2016 , 10, 1027-1039	2.5	16	
Output feedback stabilisation for a cascaded wave PDE-ODE system subject to boundary control matched disturbance. <i>International Journal of Control</i> , 2016 , 89, 2396-2405	1.5	21	
On optimal location of diffusion and related optimal control for null controllable heat equation. Journal of Mathematical Analysis and Applications, 2016, 433, 1333-1349	1.1	1	
Active Disturbance Rejection Control Approach to Output-Feedback Stabilization of a Class of Uncertain Nonlinear Systems Subject to Stochastic Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1613-1618	5.9	83	
Local exact controllability to positive trajectory for parabolic system of chemotaxis. <i>Mathematical Control and Related Fields</i> , 2016 , 6, 143-165	1.5	1	
Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty. <i>International Journal of Robust and Nonlinear Control</i> , 2016 , 26, 2314-2337	3.6	23	
Output feedback stabilization for one-dimensional heat equation with general external disturbance 2016 ,		3	
A high gain free extended state observer to output feedback stabilization of one-dimensional unstable wave equation 2016 ,		4	
Mixed H 2/H Leontrol for linear infinite-dimensional systems. <i>International Journal of Control, Automation and Systems</i> , 2016 , 14, 128-139	2.9	2	
Non-fragile HIfiltering for nonlinear discrete-time delay systems with randomly occurring gain variations. <i>ISA Transactions</i> , 2016 , 63, 196-203	5.5	21	
Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance. <i>Control Theory and Technology</i> , 2016 , 14, 179-188	1	2	
Active Disturbance Rejection Control: from ODEs to PDEs**This work was carried out with the support of the National Natural Science Foundation of China and the National Research Foundation of South Africa <i>IFAC-PapersOnLine</i> , 2016 , 49, 278-283	0.7	8	
On convergence of nonlinear extended stated observers with switching functions 2016,		1	
2016,		51	
Quasi-compactness and irreducibility of queueing models. Semigroup Forum, 2015, 91, 560-572	0.5	4	
Convergence of an Upwind Finite-Difference Scheme for Hamilton Dacobi Bellman Equation in Optimal Control. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3012-3017	5.9	12	
On Stability Equivalence between Dynamic Output Feedback and Static Output Feedback for a Class of Second Order Infinite-Dimensional Systems. <i>SIAM Journal on Control and Optimization</i> , 2015 , 53, 1934-1955	1.9	9	
The Active Disturbance Rejection Control to Stabilization for Multi-Dimensional Wave Equation With Boundary Control Matched Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 143-157	5.9	97	
	Output feedback stabilisation for a cascaded wave PDE-ODE system subject to boundary control matched disturbance. International Journal of Control, 2016, 89, 2396-2405 On optimal location of diffusion and related optimal control for null controllable heat equation. Journal of Mathematical Analysis and Applications, 2016, 433, 1333-1349 Active Disturbance Rejection Control Approach to Output-Feedback Stabilization of a Class of Uncertain Nonlinear Systems Subject to Stochastic Disturbance. IEEE Transactions on Automatic Control, 2016, 61, 1613-1618 Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control, 2016, 61, 1613-1618 Active Disturbance rejection control approach to stabilization of lower triangular systems with uncertainty. International Journal of Robust and Nonlinear Control, 2016, 26, 2314-2337 Output feedback stabilization for one-dimensional heat equation with general external disturbance 2016, A high gain free extended state observer to output feedback stabilization of one-dimensional unstable wave equation 2016, Mixed H 2/H Brontrol for linear infinite-dimensional systems. International Journal of Control, Automation and Systems, 2016, 14, 128-139 Non-fragile Hilltering for nonlinear discrete-time delay systems with randomly occurring gain variations. ISA Transactions, 2016, 63, 196-203 Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance. Control Theory and Technology, 2016, 14, 179-188 Active Disturbance Rejection Control: from ODEs to PDEs*This work was carried out with the support of the National Natural Science Foundation of China and the National Research Foundation of South Africa. IFAC-PapersOnLine, 2016, 49, 278-283 On convergence of nonlinear extended stated observers with switching functions 2016, 2016. Convergence of an Upwind Finite-Difference Scheme for HamiltonBacobiBellman Equation in Optimal Control. IEEE Transactions on Automatic Control, 2015, 60, 3012-3017 On S	Output feedback stabilisation for a cascaded wave PDE-ODE system subject to boundary control matched disturbance. International Journal of Control, 2016, 89, 2396-2405 On optimal location of diffusion and related optimal control for null controllable heat equation. Journal of Mathematical Analysis and Applications, 2016, 433, 1333-1349 Active Disturbance Rejection Control Approach to Output-Feedback Stabilization of a Class of Uncertain Nonlinear Systems Subject to Stochastic Disturbance. IEEE Transactions on Automatic Control 2016, 61, 1613-1618 Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6, 143-165 Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty. International Journal of Robust and Nonlinear Control, 2016, 26, 2314-2337 Output feedback stabilization for one-dimensional heat equation with general external disturbance 2016. A high gain free extended state observer to output feedback stabilization of one-dimensional unstable wave equation 2016. Mixed H 2/H Brontrol for linear infinite-dimensional systems. International Journal of Control, Automation and Systems, 2016, 14, 128-139 Non-fragile Hifiltering for nonlinear discrete-time delay systems with randomly occurring gain variations. ISA Transactions, 2016, 63, 196-203 Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance. Control Theory and Technology, 2016, 14, 179-188 Active Disturbance Rejection Control from ODEs to PDEs*This work was carried out with the support of the National Natural Science Foundation of China and the National Research Foundation of South Africa. IFAC-PapersOnLine, 2016, 49, 278-283 On convergence of nonlinear extended stated observers with switching functions 2016, 2016, Oussi-compactness and irreducibility of queueing models. Semigroup Forum, 2015, 91, 560-572 On Stability Equivalence between Dynamic Output Feedback and S	Output feedback stabilisation for a cascaded wave PDE-ODE system subject to boundary control matched disturbance. International Journal of Control, 2016, 89, 2396-2405 On optimal location of diffusion and related optimal control for null controllable heat equation. Journal of Mathematical Analysis and Applications, 2016, 433, 1333-1349 Active Disturbance Rejection Control Approach to Output-Feedback Stabilization of a Class of Uncertain Nonlinear Systems Subject to Stochastic Disturbance. IEEE Transactions on Automatic Control, 2016, 61, 1613-1618 Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6, 143-165 Active disturbance rejection control approach to stabilization of lower triangular systems with uncertainty. International Journal of Robust and Nonlinear Control, 2016, 26, 2314-2337 Aligh gain free extended state observer to output feedback stabilization of one-dimensional unstable wave equation 2016. Mixed H 2/H Bontrol for linear infinite-dimensional systems. International Journal of Control, Automation and Systems, 2016, 14, 128-139 Non-fragile Hillitering for nonlinear discrete-time delay systems with randomly occurring gain variations. ISA Transactions, 2016, 63, 196-203 Extended state observer for uncertain lower triangular nonlinear systems subject to stochastic disturbance. Control Theory and Technology, 2016, 14, 179-188 On convergence of nonlinear extended stated observers with switching functions 2016, Quasi-compactness and irreducibility of queueing models. Semigroup Forum, 2015, 91, 560-572 On Stability Equivalence between Dynamic Output Feedback and Static Output Feedback for a Class of Second Order Infinite-Difference Scheme for HamiltonilacobiBellman Equation in Optimal Control Infinite-Dimensional Systems. SIAM Journal on Control and Optimization, The Active Disturbance Rejection Control to Stabilization for Multi-Dimensional Wave Equation

169	Continuous dependence of optimal control to controlled domain of actuator for heat equation. <i>Systems and Control Letters</i> , 2015 , 79, 30-38	2.4	2
168	Extended state observer for uncertain lower triangular nonlinear systems. <i>Systems and Control Letters</i> , 2015 , 85, 100-108	2.4	57
167	Output Feedback Stabilization for One-Dimensional Wave Equation Subject to Boundary Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 824-830	5.9	92
166	Lyapunov approach to output feedback stabilization for the Euler B ernoulli beam equation with boundary input disturbance. <i>Automatica</i> , 2015 , 52, 95-102	5.7	103
165	Optimal actuator location for time and norm optimal control of null controllable heat equation. <i>Mathematics of Control, Signals, and Systems</i> , 2015 , 27, 23-48	1.3	10
164	Parameter estimation and stabilization for one-dimensional Schrdinger equation with boundary output constant disturbance and non-collocated control. <i>Journal of the Franklin Institute</i> , 2015 , 352, 204	4 7 -20€	54 ¹¹
163	2015,		3
162	On active disturbance rejection control for nonlinear systems using time-varying gain. <i>European Journal of Control</i> , 2015 , 23, 62-70	2.5	66
161	The active disturbance rejection control approach to stabilisation of coupled heat and ODE system subject to boundary control matched disturbance. <i>International Journal of Control</i> , 2015 , 88, 1554-1564	1.5	31
160	Active disturbance rejection control: Theoretical perspectives. <i>Communications in Information and Systems</i> , 2015 , 15, 361-421	0.8	29
159	Well-Posedness and Exact Controllability of Fourth Order Schrdinger Equation with Boundary Control and Collocated Observation. <i>SIAM Journal on Control and Optimization</i> , 2014 , 52, 365-396	1.9	15
158	Stability of optimal control of heat equation with singular potential. <i>Systems and Control Letters</i> , 2014 , 74, 18-23	2.4	1
157	Stabilization of Euler-Bernoulli Beam Equation with Boundary Moment Control and Disturbance by Active Disturbance Rejection Control and Sliding Mode Control Approaches. <i>Journal of Dynamical and Control Systems</i> , 2014 , 20, 539-558	1.1	30
156	Active Disturbance Rejection Control for Rejecting Boundary Disturbance from Multidimensional Kirchhoff Plate via Boundary Control. <i>SIAM Journal on Control and Optimization</i> , 2014 , 52, 2800-2830	1.9	26
155	The Stabilization of Multi-Dimensional Wave Equation with Boundary Control Matched Disturbance. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1136	53-113	68
154	Active Disturbance Rejection Control for a 2½ Hyperbolic System with an Input Disturbance. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 11385-11390		6
153	Well-posedness and regularity of Euler B ernoulli equation with variable coefficient and Dirichlet boundary control and collocated observation. <i>Mathematical Methods in the Applied Sciences</i> , 2014 , 37, 2889-2905	2.3	2
152	Lyapunov approach to boundary stabilization of an anti-stable heat equation with boundary disturbance 2014 .		1

(2013-2014)

151	Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance. <i>International Journal of Control</i> , 2014 , 87, 925-939	1.5	33
150	Output feedback stabilization of an unstable wave equation with general corrupted boundary observation. <i>Automatica</i> , 2014 , 50, 3164-3172	5.7	22
149	The Lyapunov approach to boundary stabilization of an anti-stable one-dimensional wave equation with boundary disturbance. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 54-69	3.6	22
148	Local null controllability for a chemotaxis system of parabolic liptic type. Systems and Control Letters, 2014 , 65, 106-111	2.4	5
147	Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schrdinger equation subject to boundary control matched disturbance. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 2194-2212	3.6	78
146	Dynamic programming approach to the numerical solution of optimal control with paradigm by a mathematical model for drug therapies of HIV/AIDS. <i>Optimization and Engineering</i> , 2014 , 15, 119-136	2.1	2
145	Stabilization of the Euler B ernoulli equation via boundary connection with heat equation. <i>Mathematics of Control, Signals, and Systems</i> , 2014 , 26, 77-118	1.3	14
144	Stabilization and regulator design for a one-dimensional unstable wave equation with input harmonic disturbance. <i>International Journal of Robust and Nonlinear Control</i> , 2013 , 23, 514-533	3.6	40
143	On Convergence of Boundary Hausdorff Measure and Application to a Boundary Shape Optimization Problem. <i>SIAM Journal on Control and Optimization</i> , 2013 , 51, 253-272	1.9	4
142	A state dependent pulse control strategy for a SIRS epidemic system. <i>Bulletin of Mathematical Biology</i> , 2013 , 75, 1697-715	2.1	17
141	On nodal line of the second eigenfunction of the Laplacian over concave domains in R2. <i>Journal of Systems Science and Complexity</i> , 2013 , 26, 483-488	1	3
140	On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems. <i>SIAM Journal on Control and Optimization</i> , 2013 , 51, 1727-1757	1.9	177
139	Adaptive Output Feedback Stabilization for One-Dimensional Wave Equation with Corrupted Observation by Harmonic Disturbance. <i>SIAM Journal on Control and Optimization</i> , 2013 , 51, 1679-1706	1.9	28
138	The active disturbance rejection and sliding mode control approach to the stabilization of the Euler B ernoulli beam equation with boundary input disturbance. <i>Automatica</i> , 2013 , 49, 2911-2918	5.7	155
137	Weak Convergence of Nonlinear High-Gain Tracking Differentiator. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1074-1080	5.9	53
136	Sliding Mode and Active Disturbance Rejection Control to Stabilization of One-Dimensional Anti-Stable Wave Equations Subject to Disturbance in Boundary Input. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1269-1274	5.9	130
135	2013,		1
134	Parameter Estimation and Non-Collocated Adaptive Stabilization for a Wave Equation Subject to General Boundary Harmonic Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1631-1643	5.9	57

133	The Existence of Optimal Solution for a Shape Optimization Problem on Starlike Domain. <i>Journal of Optimization Theory and Applications</i> , 2012 , 152, 21-30	1.6	3
132	Some Compact Classes of Open Sets under Hausdorff Distance and Application to Shape Optimization. <i>SIAM Journal on Control and Optimization</i> , 2012 , 50, 222-242	1.9	5
131	On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty. <i>IET Control Theory and Applications</i> , 2012 , 6, 2375-2386	2.5	96
130	On convergence of nonlinear active disturbance rejection for SISO systems 2012,		21
129	Global stability for a delayed HIV-1 infection model with nonlinear incidence of infection. <i>Applied Mathematics and Computation</i> , 2012 , 219, 617-623	2.7	12
128	An algorithm for determination of age-specific fertility rate from initial age structure and total population. <i>Journal of Systems Science and Complexity</i> , 2012 , 25, 833-844	1	3
127	Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2012 , 18, 22-35	1	35
126	On Spectrum and Riesz basis property for one-dimensional wave equation with Boltzmann damping. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2012 , 18, 889-913	1	11
125	Well-posedness and regularity for non-uniform Schrdinger and Euler-Bernoulli equations with boundary control and observation. <i>Quarterly of Applied Mathematics</i> , 2012 , 70, 111-132	0.7	3
124	Parameter estimation and stabilisation for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control. <i>International Journal of Control</i> , 2011 , 84, 381-395	1.5	15
123	Wave Equation Stabilization by Delays Equal to Even Multiples of the Wave Propagation Time. <i>SIAM Journal on Control and Optimization</i> , 2011 , 49, 517-554	1.9	43
122	Boundary Controllers and Observers for the Linearized Schrdinger Equation. SIAM Journal on Control and Optimization, 2011, 49, 1479-1497	1.9	58
121	The Stabilization of One-Dimensional Wave Equation by Delayed Output Feedback. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 12538-12543		
120	Extended State Observer for Nonlinear Systems with Uncertainty. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 1855-1860		7
119	Spectral Analysis and Riesz Basis Property for Wave Equation with Boltzmann Damping. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 14374-14379		
118	Blow-up solution of nonlinear reaction-diffusion equations under boundary feedback. <i>Journal of Dynamical and Control Systems</i> , 2011 , 17, 273-290	1.1	3
117	Global existence and blow-up solutions for quasilinear reaction diffusion equations with a gradient term. <i>Applied Mathematics Letters</i> , 2011 , 24, 936-942	3.5	10
116	Parameter estimation and stabilization for a wave equation with boundary output harmonic disturbance and non-collocated control. <i>International Journal of Robust and Nonlinear Control</i> , 2011 , 21, 1297-1321	3.6	28

115	On the spectrum of Euler B ernoulli beam equation with Kelvin V oigt damping. <i>Journal of Mathematical Analysis and Applications</i> , 2011 , 374, 210-229	1.1	7	
114	On the convergence of an extended state observer for nonlinear systems with uncertainty. <i>Systems and Control Letters</i> , 2011 , 60, 420-430	2.4	461	
113	On convergence of tracking differentiator. International Journal of Control, 2011, 84, 693-701	1.5	142	
112	A note for the global stability of a delay differential equation of hepatitis B virus infection. <i>Mathematical Biosciences and Engineering</i> , 2011 , 8, 689-94	2.1	13	
111	Backstepping approach to the arbitrary decay rate for Euler B ernoulli beam under boundary feedback. <i>International Journal of Control</i> , 2010 , 83, 2098-2106	1.5	23	•
110	Feedthrough Operator for Linear Elasticity System with Boundary Control and Observation. <i>SIAM Journal on Control and Optimization</i> , 2010 , 48, 3708-3734	1.9	10	
109	. IEEE Transactions on Automatic Control, 2010 , 55, 1226-1232	5.9	19	
108	Correction to Dutput Feedback Stabilization of a One-Dimensional Schrdinger Equation by Boundary Observation with Time Delay[May 10 1226-1232]. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 2676-2676	5.9	7	
107	Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions. <i>Computers and Mathematics With Applications</i> , 2010 , 60, 670-679	2.7	14	
106	Approximation of optimal feedback control: a dynamic programming approach. <i>Journal of Global Optimization</i> , 2010 , 46, 395-422	1.5	7	
105	Well-posedness and regularity of Naghdi's shell equation under boundary control and observation. Journal of Differential Equations, 2010 , 249, 3174-3214	2.1	12	
104	Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback. <i>Automatica</i> , 2010 , 46, 1203-1209	5.7	17	
103	Spectral analysis of a wave equation with Kelvin-Voigt damping. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2010 , 90, 323-342	1	15	
102	Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions. <i>Applicable Analysis</i> , 2009 , 88, 183-191	0.8	7	
101	Dynamic behavior of a heat equation with memory. <i>Mathematical Methods in the Applied Sciences</i> , 2009 , 32, 1287-1310	2.3	17	
100	Well-posedness and regularity of weakly coupled wave-plate equation with boundary control and observation. <i>Journal of Dynamical and Control Systems</i> , 2009 , 15, 331-358	1.1	10	
99	On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2009 , 71, 5961-5978	1.3	26	
98	Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. <i>Systems and Control Letters</i> , 2009 , 58, 334-341	2.4	10	

97	Analyticity of a thermoelastic plate with variable coefficients. <i>Journal of Mathematical Analysis and Applications</i> , 2009 , 354, 330-338	1.1	5
96	The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. <i>Automatica</i> , 2009 , 45, 790-797	5.7	43
95	Stability analysis of an HIV/AIDS epidemic model with treatment. <i>Journal of Computational and Applied Mathematics</i> , 2009 , 229, 313-323	2.4	107
94	Dynamic stabilization of an Euler B ernoulli beam equation with time delay in boundary observation. <i>Automatica</i> , 2009 , 45, 1468-1475	5.7	77
93	Well-Posedness of Systems of Linear Elasticity with Dirichlet Boundary Control and Observation. <i>SIAM Journal on Control and Optimization</i> , 2009 , 48, 2139-2167	1.9	10
92	Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 1134-1140	5.9	79
91	Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback. <i>SIAM Journal on Control and Optimization</i> , 2008 , 47, 553-574	1.9	64
90	On the dynamic behavior and stability of controlled connected Rayleigh beams under pointwise output feedback. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2008 , 14, 632-656	1	4
89	A new algorithm for finding numerical solutions of optimal feedback control. <i>IMA Journal of Mathematical Control and Information</i> , 2008 , 26, 95-104	1.1	4
88	Boundary Output Feedback Stabilization of A One-Dimensional Wave Equation System With Time Delay. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 8755-876	0	11
87	Stability Analysis for an Euler-Bernoulli Beam under Local Internal Control and Boundary Observation. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 113	322-11	327
86	Stabilization of Multidimensional Wave Equations under Non-Collocated Controls and Observations. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 11	328-1 ⁻	1333
85	Identifiability of Variable Coefficients for Vibrating Systems by Boundary Control and Observation in Finite Time Duration. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 13396-13401		
84	Analyticity and Dynamic Behavior of a Damped Three-Layer Sandwich Beam. <i>Journal of Optimization Theory and Applications</i> , 2008 , 137, 675-689	1.6	13
83	Stability analysis for an Euler-Bernoulli beam under local internal control and boundary observation. <i>Journal of Control Theory and Applications</i> , 2008 , 6, 341-350		3
82	Riesz basis and stabilization for the flexible structure of a symmetric tree-shaped beam network. <i>Mathematical Methods in the Applied Sciences</i> , 2008 , 31, 289-314	2.3	20
81	Dynamic stabilization of an Euler B ernoulli beam under boundary control and non-collocated observation. <i>Systems and Control Letters</i> , 2008 , 57, 740-749	2.4	32
80	Output-feedback stabilization of an unstable wave equation. <i>Automatica</i> , 2008 , 44, 63-74	5.7	150

(2006-2007)

79	On well-posedness, regularity and exact controllability for problems of transmission of plate equation with variable coefficients. <i>Quarterly of Applied Mathematics</i> , 2007 , 65, 705-736	0.7	8
78	Identification of variable spacial coefficients for a beam equation from boundary measurements. <i>Automatica</i> , 2007 , 43, 732-737	5.7	23
77	Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2007 , 66, 427-441	1.3	28
76	On dynamic behavior of a hyperbolic system derived from a thermoelastic equation with memory type. <i>Journal of the Franklin Institute</i> , 2007 , 344, 75-96	4	19
75	Numerical solution to the optimal feedback control of continuous casting process. <i>Journal of Global Optimization</i> , 2007 , 39, 171-195	1.5	26
74	Well-posedness and regularity for an Euler B ernoulli plate with variable coefficients and boundary control and observation. <i>Mathematics of Control, Signals, and Systems</i> , 2007 , 19, 337-360	1.3	8
73	Observer Based Boundary Control of an Unstable Wave Equation. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	1
72	Boundary controllers and observers for Schrdinger equation 2007,		7
71	On the well-posedness and regularity of the wave equation with variable coefficients. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2007 , 13, 776-792	1	12
70	The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Noncollocated Observation. <i>IEEE Transactions on Automatic Control</i> , 2007 , 52, 371-377	5.9	68
69	On the Relation between Stability of Continuous- and Discrete-Time Evolution Equations via the Cayley Transform. <i>Integral Equations and Operator Theory</i> , 2006 , 54, 349-383	0.5	17
68	On the stability of swelling porous elastic soils with fluid saturation by one internal damping. <i>IMA Journal of Applied Mathematics</i> , 2006 , 71, 565-582	1	25
67	Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2006 , 12, 12-34	1	15
66	A New Algorithm for Finding Numerical Solutions of Optimal Feedback Control Law 2006,		1
65	A New Approach to the Stabilization of a Rayleigh Beam Using Collocated Control and Observation 2006 ,		1
64	Riesz Basis Generation of Abstract Second-Order Partial Differential Equation Systems with General Non-Separated Boundary Conditions. <i>Numerical Functional Analysis and Optimization</i> , 2006 , 27, 291-328	1	17
63	Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition. <i>Journal of Functional Analysis</i> , 2006 , 231, 245-268	1.4	28
62	Remarks on the application of the Keldysh theorem to the completeness of root subspace of non-self-adjoint operators and comments on Spectral operators generated by Timoshenko beam model Systems and Control Letters, 2006 , 55, 1029-1032	2.4	7

61	Regularity of an Euler-Bernoulli Equation with Neumann Control and Collocated Observation. Journal of Dynamical and Control Systems, 2006 , 12, 405-418	1.1	24
60	The Regularity of the Wave Equation with Partial Dirichlet Control and Colocated Observation. <i>SIAM Journal on Control and Optimization</i> , 2005 , 44, 1598-1613	1.9	39
59	The well-posedness and stability of a beam equation with conjugate variables assigned at the same boundary point. <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 2087-2093	5.9	4
58	Stabilization and parameter estimation for an Euler B ernoulli beam equation with uncertain harmonic disturbance under boundary output feedback control. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 2005 , 61, 671-693	1.3	9
57	On the -semigroup generation and exponential stability resulting from a shear force feedback on a rotating beam. <i>Systems and Control Letters</i> , 2005 , 54, 557-574	2.4	33
56	Regularity of a Schrdinger equation with Dirichlet control and colocated observation. <i>Systems and Control Letters</i> , 2005 , 54, 1135-1142	2.4	43
55	Numerical solution to the optimal birth feedback control of a population dynamics: viscosity solution approach. <i>Optimal Control Applications and Methods</i> , 2005 , 26, 229-254	1.7	11
54	Maximum principle for the optimal control of an ablation-transpiration cooling system with free final time and phase constraints. <i>Journal of Control Theory and Applications</i> , 2005 , 3, 101-109		
53	Boundary Controllability and Observability of a One-Dimensional Nonuniform SCOLE System. Journal of Optimization Theory and Applications, 2005 , 127, 89-108	1.6	14
52	A hybrid symbolic-numerical simulation method for some typical boundary control problems 2004 ,		1
51	On harmonic disturbance rejection of an undamped Euler-Bernoulli beam with rigid tip body. <i>ESAIM - Control, Optimisation and Calculus of Variations</i> , 2004 , 10, 615-623	1	5
50	A Hybrid Symbolic-Numerical Simulation Method for Some Typical Boundary Control Problems. <i>Simulation</i> , 2004 , 80, 635-643	1.2	9
49	On Spectrum of a General Petrovsky Type Equation and Riesz Basis of N-Connected Beams with Linear Feedback at Joints. <i>Journal of Dynamical and Control Systems</i> , 2004 , 10, 187-211	1.1	5
48	Stabilization of an Elastic Plate with Viscoelastic Boundary Conditions. <i>Journal of Optimization Theory and Applications</i> , 2004 , 122, 669-690	1.6	6
47	Differentiability of the C0-semigroup and Failure of Riesz Basis for a Mono-tubular Heat Exchanger Equation with Output Feedback: A Case Study. <i>Semigroup Forum</i> , 2004 , 69, 462	0.5	7
46	Basis property and stabilization of a translating tensioned beam through a pointwise control force. <i>Computers and Mathematics With Applications</i> , 2004 , 47, 1397-1409	2.7	2
45	Riesz bases and exact controllability of C0-groups with one-dimensional input operators. <i>Systems and Control Letters</i> , 2004 , 52, 221-232	2.4	11
44	A Sufficient Condition on Riesz Basis with Parentheses of NonSelf-Adjoint Operator and Application to a Serially Connected String System under Joint Feedbacks. <i>SIAM Journal on Control and Optimization</i> , 2004 , 43, 1234-1252	1.9	19

High-gain adaptive regulator for a string equation with uncertain harmonic disturbance under boundary output feedback control. *Journal of Control Theory and Applications*, **2003**, 1, 35-42

42	Riesz Basis Property of Evolution Equations in Hilbert Spaces and Application to a Coupled String Equation. <i>SIAM Journal on Control and Optimization</i> , 2003 , 42, 966-984	1.9	57
41	Controllability and stability of a second-order hyperbolic system with collocated sensor/actuator. <i>Systems and Control Letters</i> , 2002 , 46, 45-65	2.4	60
40	On the Boundary Control of a Hybrid System with Variable Coefficients. <i>Journal of Optimization Theory and Applications</i> , 2002 , 114, 373-395	1.6	34
39	Basis Property of a Rayleigh Beam with Boundary Stabilization. <i>Journal of Optimization Theory and Applications</i> , 2002 , 112, 529-547	1.6	5
38	Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. <i>International Journal of Systems Science</i> , 2002 , 33, 351-358	2.3	26
37	Riesz basis property of a second-order hyperbolic system with collocated scalar input-output. <i>IEEE Transactions on Automatic Control</i> , 2002 , 47, 693-698	5.9	9
36	Riesz Basis Approach to the Tracking Control of a Flexible Beam with a Tip Rigid Body without Dissipativity. <i>Optimization Methods and Software</i> , 2002 , 17, 655-681	1.3	6
35	Riesz Basis Property and Exponential Stability of Controlled EulerBernoulli Beam Equations with Variable Coefficients. <i>SIAM Journal on Control and Optimization</i> , 2002 , 40, 1905-1923	1.9	65
34	Riesz Basis Approach to the Stabilization of a Flexible Beam with a Tip Mass. <i>SIAM Journal on Control and Optimization</i> , 2001 , 39, 1736-1747	1.9	106
33	Riesz basis generation, eigenvalues distribution, and exponential stability for a euler-bernoulli beam with joint feedback control. <i>Revista Matematica Complutense</i> , 2001 , 14, 205	0.8	19
32	A semi-discrete approach to modelling and control of the continuous casting process. <i>Steel Research = Archiv Fil Das Eisenhiltenwesen</i> , 2000 , 71, 220-227		2
31	On the spectrum-determined growth condition of a vibration cable with a tip mass. <i>IEEE Transactions on Automatic Control</i> , 2000 , 45, 89-93	5.9	12
30	Asymptotic Behavior of the Energy of Vibration of a Moving String with Varying Lengths. JVC/Journal of Vibration and Control, 2000 , 6, 491-507	2	2
29	A linear tracking-differentiator and application to the online estimation of the frequency of a sinusoidal signal 2000 ,		10
28	Stabilization of a Translating Tensioned Beam Through a Pointwise Control Force. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> 2000 , 122, 322-331	1.6	6
27	The first real eigenvalue of a one-dimensional linear thermoelastic system. <i>Computers and Mathematics With Applications</i> , 1999 , 38, 249-256	2.7	4
26	On the exponential stability of C 0-semigroups on Banach spaces with compact perturbations. <i>Semigroup Forum</i> , 1999 , 59, 190-196	0.5	7

25	Stability and Stabilization of Infinite Dimensional Systems with Applications. <i>Communications and Control Engineering</i> , 1999 ,	0.6	238
24	On the exponential stability of an initial-boundary equation arising from strain feedback control of flexible robot arms with rigid offset. <i>International Journal of Control</i> , 1998 , 69, 227-238	1.5	4
23	Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1998 , 65, 901-907	2.7	20
22	Asymptotic Distribution of Eigenvalues of a Constrained Translating String. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1997 , 64, 613-619	2.7	9
21	On Hybrid Boundary Control of Flexible Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 1997 , 119, 836-839	1.6	2
20	Shear force feedback control of a single-link flexible robot with a revolute joint. <i>IEEE Transactions on Automatic Control</i> , 1997 , 42, 53-65	5.9	64
19	Asymptotic Behavior of the Eigenfrequency of a One-Dimensional Linear Thermoelastic System. <i>Journal of Mathematical Analysis and Applications</i> , 1997 , 213, 406-421	1.1	12
18	ON THE ENERGY DECAY OF TWO COUPLED STRINGS THROUGH A JOINT DAMPER. <i>Journal of Sound and Vibration</i> , 1997 , 203, 447-455	3.9	16
17	NEW RESULTS ON THE EXPONENTIAL STABILITY OF NON-STATIONARY POPULATION DYNAMICS. <i>Acta Mathematica Scientia</i> , 1996 , 16, 330-337	0.7	3
16	Stability analysis of a hybrid system arising from feedback control of flexible robots. <i>Japan Journal of Industrial and Applied Mathematics</i> , 1996 , 13, 417-434	0.6	10
15	Initial-boundary value problem and exponential decay for a flexible-beam vibration with gain adaptive direct strain feedback control. <i>Nonlinear Analysis: Theory, Methods & Applications</i> , 1996 , 27, 353-365	1.3	17
14	Tracking control of a flexible beam by nonlinear boundary feedback. <i>Journal of Applied Mathematics and Stochastic Analysis</i> , 1995 , 8, 47-58		8
13	. IEEE Transactions on Automatic Control, 1995 , 40, 747-751	5.9	31
12	. IEEE Transactions on Automation Science and Engineering, 1995 , 11, 760-765		54
11	On the Semigroup for Age Dependent Population Dynamics with Spatial Diffusion. <i>Journal of Mathematical Analysis and Applications</i> , 1994 , 184, 190-199	1.1	18
10	Semigroup approach to the stability of a direct strain feedback control system of elastic vibration with structure damping. <i>Applied Mathematics Letters</i> , 1994 , 7, 95-100	3.5	1
9	Rothe approximation to an ablation-transpiration cooling control system. <i>Mathematical and Computer Modelling</i> , 1993 , 18, 63-74		
8	Age-dependent population dynamics based on parity interval progression. <i>Mathematical and Computer Modelling</i> , 1992 , 16, 57-68		2

LIST OF PUBLICATIONS

7	Controlled age-dependent population dynamics based on parity progression. <i>Journal of Mathematical Analysis and Applications</i> , 1992 , 166, 442-455	1.1	4	
6	A time-dependent McKendrick population model for logistic transition. <i>Mathematical and Computer Modelling</i> , 1991 , 15, 49-59		1	
5	Global behaviour of age-dependent logistic population models. <i>Journal of Mathematical Biology</i> , 1990 , 28, 225-35	2	17	
4	Optimal birth control of population dynamics. II. Problems with free final time, phase constraints, and mini-max costs. <i>Journal of Mathematical Analysis and Applications</i> , 1990 , 146, 523-39	1.1	38	
3	Pointwise Stabilization for a Chain of Coupled Vibrating Strings. <i>IMA Journal of Mathematical Control and Information</i> , 1990 , 7, 307-315	1.1	5	
2	Optimal birth control of population dynamics. <i>Journal of Mathematical Analysis and Applications</i> , 1989 , 144, 532-52	1.1	57	
1	A new boundary control method for beam equation with delayed boundary measurement using modified Smith predictors		1	