
Paul A Beales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1953402/publications.pdf Version: 2024-02-01

DALLI A REALES

#	Article	IF	CITATIONS
1	Evaluation of injectable nucleus augmentation materials for the treatment of intervertebral disc degeneration. Biomaterials Science, 2022, 10, 874-891.	2.6	8
2	Membrane mixing and dynamics in hybrid POPC/poly(1,2-butadiene- <i>block</i> -ethylene oxide) (PBd- <i>b</i> -PEO) lipid/block co-polymer giant vesicles. Soft Matter, 2022, 18, 1294-1301.	1.2	11
3	Collective Behavior of Urease pH Clocks in Nano- and Microvesicles Controlled by Fast Ammonia Transport. Journal of Physical Chemistry Letters, 2022, 13, 1979-1984.	2.1	10
4	Detergent-Free Functionalization of Hybrid Vesicles with Membrane Proteins Using SMALPs. Macromolecules, 2022, 55, 3415-3422.	2.2	4
5	SAWstitch: exploring self-avoiding walks through hand embroidery. Physics Education, 2022, 57, 045029.	0.3	2
6	Protein corona alters the mechanisms of interaction between silica nanoparticles and lipid vesicles. Soft Matter, 2022, 18, 5021-5026.	1.2	3
7	The influence of phosphatidylserine localisation and lipid phase on membrane remodelling by the ESCRT-II/ESCRT-III complex. Faraday Discussions, 2021, 232, 188-202.	1.6	9
8	Hydrodynamic Mixing Tunes the Stiffness of Proteoglycanâ€Mimicking Physical Hydrogels. Advanced Healthcare Materials, 2021, 10, 2001998.	3.9	4
9	Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane. Nature Communications, 2021, 12, 2791.	5.8	28
10	Tuning stable noble metal nanoparticles dispersions to moderate their interaction with model membranes. Journal of Colloid and Interface Science, 2021, 594, 101-112.	5.0	5
11	Breaking Isolation to Form New Networks: pH-Triggered Changes in Connectivity inside Lipid Nanoparticles. Journal of the American Chemical Society, 2021, 143, 16556-16565.	6.6	11
12	Biomimetic Curvature and Tension-Driven Membrane Fusion Induced by Silica Nanoparticles. Langmuir, 2021, 37, 13917-13931.	1.6	15
13	Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. Journal of Colloid and Interface Science, 2020, 562, 418-428.	5.0	48
14	Characterisation of Hybrid Polymersome Vesicles Containing the Efflux Pumps NaAtm1 or P-Glycoprotein. Polymers, 2020, 12, 1049.	2.0	10
15	Hybrid Vesicle Stability under Sterilisation and Preservation Processes Used in the Manufacture of Medicinal Formulations. Polymers, 2020, 12, 914.	2.0	4
16	Mechanomodulation of Lipid Membranes by Weakly Aggregating Silver Nanoparticles. Biochemistry, 2019, 58, 4761-4773.	1.2	7
17	InÂVitro Membrane Remodeling by ESCRT is Regulated by Negative Feedback from Membrane Tension. IScience, 2019, 15, 173-184.	1.9	31
18	Towards feedback-controlled nanomedicines for smart, adaptive delivery. Experimental Biology and Medicine, 2019, 244, 283-293.	1.1	10

PAUL A BEALES

#	Article	IF	CITATIONS
19	Topography design in model membranes: Where biology meets physics. Experimental Biology and Medicine, 2019, 244, 294-303.	1.1	7
20	Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context. Biointerphases, 2018, 13, 028501.	0.6	23
21	A reconstitution method for integral membrane proteins in hybrid lipid-polymer vesicles for enhanced functional durability. Methods, 2018, 147, 142-149.	1.9	30
22	Membrane remodelling by a lipidated endosomal sorting complex required for transport-III chimera, <i>in vitro</i> . Interface Focus, 2018, 8, 20180035.	1.5	9
23	The artificial cell: biology-inspired compartmentalization of chemical function. Interface Focus, 2018, 8, 20180046.	1.5	10
24	Durable vesicles for reconstitution of membrane proteins in biotechnology. Biochemical Society Transactions, 2017, 45, 15-26.	1.6	53
25	A toehold in cell surface dynamics. Nature Nanotechnology, 2017, 12, 404-406.	15.6	7
26	Peptide:glycosaminoglycan hybrid hydrogels as an injectable intervention for spinal disc degeneration. Journal of Materials Chemistry B, 2016, 4, 3225-3231.	2.9	23
27	Durable proteo-hybrid vesicles for the extended functional lifetime of membrane proteins in bionanotechnology. Chemical Communications, 2016, 52, 11020-11023.	2.2	67
28	Sortase-mediated labelling of lipid nanodiscs for cellular tracing. Molecular BioSystems, 2016, 12, 1760-1763.	2.9	11
29	Chemical compartmentalisation by membranes: from biological mechanism to biomimetic applications. Physical Chemistry Chemical Physics, 2015, 17, 15487-15488.	1.3	1
30	Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments. Physical Chemistry Chemical Physics, 2015, 17, 15489-15507.	1.3	28
31	PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties. Biophysical Journal, 2015, 109, 936-947.	0.2	102
32	β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH. PLoS ONE, 2014, 9, e104492.	1.1	30
33	Solid-Like Domains in Mixed Lipid Bilayers. Behavior Research Methods, 2014, , 137-154.	2.3	1
34	Application of nucleic acid–lipid conjugates for the programmable organisation of liposomal modules. Advances in Colloid and Interface Science, 2014, 207, 290-305.	7.0	57
35	Using DNA-Driven Assembled Phospholipid Nanodiscs as a Scaffold for Gold Nanoparticle Patterning. Langmuir, 2013, 29, 13089-13094.	1.6	6
36	Serum albumin enhances the membrane activity of ZnO nanoparticles. Chemical Communications, 2013, 49, 4172.	2.2	29

PAUL A BEALES

#	Article	IF	CITATIONS
37	Reversible Assembly of Stacked Membrane Nanodiscs with Reduced Dimensionality and Variable Periodicity. Journal of the American Chemical Society, 2013, 135, 3335-3338.	6.6	33
38	Cytochrome <i>c</i> causes pore formation in cardiolipin-containing membranes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6269-6274.	3.3	119
39	Lytic and Non-Lytic Permeabilization of Cardiolipin-Containing Lipid Bilayers Induced by Cytochrome c. PLoS ONE, 2013, 8, e69492.	1.1	10
40	Freezing or Wrapping: The Role of Particle Size in the Mechanism of Nanoparticle–Biomembrane Interaction. Langmuir, 2012, 28, 12831-12837.	1.6	90
41	Formation and dissolution of phospholipid domains with varying textures in hybrid lipo-polymersomes. Soft Matter, 2012, 8, 7982.	1.2	76
42	Specific adhesion between DNA-functionalized "Janus―vesicles: size-limited clusters. Soft Matter, 2011, 7, 1747-1755.	1.2	63
43	Giant Phospholipid/Block Copolymer Hybrid Vesicles: Mixing Behavior and Domain Formation. Langmuir, 2011, 27, 1-6.	1.6	129
44	Single Vesicle Observations of the Cardiolipinâ^'Cytochrome <i>c</i> Interaction: Induction of Membrane Morphology Changes. Langmuir, 2011, 27, 6107-6115.	1.6	62
45	Partitioning of Membrane-Anchored DNA between Coexisting Lipid Phases. Journal of Physical Chemistry B, 2009, 113, 13678-13686.	1.2	53
46	DNA as Membrane-Bound Ligand-Receptor Pairs: Duplex Stability Is Tuned by Intermembrane Forces. Biophysical Journal, 2009, 96, 1554-1565.	0.2	31
47	Specific Binding of Different Vesicle Populations by the Hybridization of Membrane-Anchored DNA. Journal of Physical Chemistry A, 2007, 111, 12372-12380.	1.1	99
48	Lipid organization and the morphology of solid-like domains in phase-separating binary lipid membranes. Journal of Physics Condensed Matter, 2006, 18, L415-L420.	0.7	26
49	Solid-like domains in fluid membranes. Journal of Physics Condensed Matter, 2005, 17, S3341-S3346.	0.7	15
50	Protein crystallization: scaling of charge and salt concentration in lysozyme solutions. Journal of Physics Condensed Matter, 2000, 12, L569-L574.	0.7	48