Nadezhda Polekhina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1953196/publications.pdf

Version: 2024-02-01

1163117 1125743 32 182 8 13 citations g-index h-index papers 33 33 33 71 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure of EK-181 ferritic-martensitic steel after heat treatment under various conditions. Technical Physics, 2012, 57, 48-54.	0.7	20
2	Thermal stability of the microstructure of 12% chromium ferritic–martensitic steels after long-term aging at high temperatures. Technical Physics, 2016, 61, 209-214.	0.7	20
3	Effect of high-temperature thermomechanical treatment in the austenite region on microstructure and mechanical properties of low-activated 12% chromium ferritic-martensitic steel EK-181. Technical Physics, 2017, 62, 736-740.	0.7	18
4	Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and ChS-139. Technical Physics, 2016, 61, 97-102.	0.7	15
5	The effect of heat treatment on the microstructure and mechanical properties of heat-resistant ferritic–martensitic steel EK-181. Journal of Nuclear Materials, 2014, 455, 665-668.	2.7	13
6	The Features of Microstructure and Mechanical Properties of Metastable Austenitic Steel Subjected to Low-Temperature and Subsequent Warm Deformation. Russian Physics Journal, 2016, 59, 782-787.	0.4	12
7	Structural Transformations and Mechanical Properties of Metastable Austenitic Steel under High Temperature Thermomechanical Treatment. Metals, 2021, 11, 645.	2.3	12
8	Temperature Dependences of Mechanical Properties and Fracture Features of Low-Activation Ferritic-Martensitic EK-181 Steel in a Temperature Range from – 196 to 720°C. Physics of Atomic Nuclei, 2018, 81, 1024-1032.	0.4	11
9	The effect of tempering temperature on the features of phase transformations in the ferritic–martensitic steel EK-181. Journal of Nuclear Materials, 2014, 455, 496-499.	2.7	7
10	Microstructure, Mechanical Properties and Fracture of EP-823 Ferritic/Martensitic Steel After High-Temperature Thermomechanical Treatment. Russian Physics Journal, 2020, 63, 803-808.	0.4	7
11	The Effect of Heat-Treatment Modes on Microstructure of Reduced-Activation Ferritic-Martensitic Steel EK-181. Russian Physics Journal, 2013, 56, 542-545.	0.4	6
12	Effect of Multistage High Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Austenitic Reactor Steel. Metals, 2022, 12, 63.	2.3	6
13	The features of microstructure and mechanical properties of austenitic steel after direct and reverse martensitic transformations. AIP Conference Proceedings, 2015, , .	0.4	4
14	Effect of thermomechanical treatment modes on structural-phase states and mechanical properties of metastable austenitic steel. AIP Conference Proceedings, 2016, , .	0.4	4
15	Microstructure and mechanical properties of ferritic-martensitic steel EP-823 after high-temperature thermomechanical treatment. AIP Conference Proceedings, 2019, , .	0.4	4
16	Behavior of 12% Cr low-activation ferritic-martensitic steel EK-181 after holding in a static lead melt at 600 $\hat{A}^{\circ}\hat{D}_{i}$ for 3000 hours. Journal of Nuclear Materials, 2021, 545, 152754.	2.7	4
17	Strengthening mechanisms of heat-resistant 12% Cr ferritic-martensitic steels after different modes of heat treatment. AIP Conference Proceedings, 2016, , .	0.4	3
18	A comparative investigation of mechanical properties of the ferritic-martensitic steel EK-181 in the temperature range 700–800°C after high-temperature thermomechanical and traditional heat treatments. AIP Conference Proceedings, 2018, , .	0.4	3

#	Article	IF	CITATIONS
19	Features of Phase Transformations of Low-activation 12%-Chromium Ferritic-Martensitic Steel Ek-181. Russian Physics Journal, 2020, 62, 2314-2318.	0.4	3
20	Effect of thermomechanical treatments on the formation of submicrocrystalline structural states and mechanical properties of metastable austenitic steel. Letters on Materials, 2016, 6, 290-293.	0.7	3
21	The microstructural stability of low-activation 12% -chromium ferritic-martensitic steel EK- 181 during thermal aging. AIP Conference Proceedings, 2014 , , .	0.4	2
22	Thermal Stability of the Microstructure and Mechanical Properties of the Ferritic-Martensitic Steel EK-181. Russian Physics Journal, 2018, 61, 1536-1540.	0.4	2
23	Microstructure and mechanical properties of heat-resistant 12% Cr ferritic-martensitic steel EK-181 after thermomechanical treatment. AIP Conference Proceedings, 2015, , .	0.4	1
24	Features of deformation localization in stable austenitic steel under thermomechanical treatment. AIP Conference Proceedings, 2016 , , .	0.4	1
25	Deformed microstructure of ferritic-martensitic steel EK-181. AIP Conference Proceedings, 2019, , .	0.4	1
26	Mechanical properties and fracture features of low-activation ferritic-martensitic steel EK-181 at subzero temperatures. AIP Conference Proceedings, 2017, , .	0.4	0
27	Mechanisms for improving strength of metastable austenitic steel by thermomechanical treatments. AIP Conference Proceedings, 2017, , .	0.4	0
28	Mechanical properties and fracture of heat-resistant ferritic-martensitic steels EK-181, ChS-139 and EP-823 at the temperatures from $\hat{a} \in 196$ to $720 \hat{A}^{\circ}$ C. AIP Conference Proceedings, 2018, , .	0.4	0
29	Microstructure and elemental composition of ferritic-martensitic steel EK-181 after a prolonged contact with a coolant. AIP Conference Proceedings, 2019, , .	0.4	О
30	Effect of liquid nitrogen and warm deformation on the microstructure and mechanical properties of 321-type metastable austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141525.	5 . 6	0
31	Fracture features of heat-resistant 12% Cr ferritic-martensitic steel EK- 181 in the temperature range of its ductile-brittle transition. AIP Conference Proceedings, 2020 , , .	0.4	0
32	Mechanical properties and fracture features of ferritic-martensitic steel EP-823 in the temperature range of 300–600°C. AIP Conference Proceedings, 2020, , .	0.4	0