Jung San Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1953082/publications.pdf

Version: 2024-02-01

361296 377752 3,279 34 20 34 citations h-index g-index papers 34 34 34 1766 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature, 1983, 304, 35-39.	13.7	1,629
2	Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 1984, 39, 79-87.	13.5	266
3	The Type V Transforming Growth Factor \hat{I}^2 Receptor Is the Putative Insulin-like Growth Factor-binding Protein 3 Receptor. Journal of Biological Chemistry, 1997, 272, 20572-20576.	1.6	225
4	Cellular growth inhibition by IGFBPâ€3 and TGFâ€Î² 1 requires LRPâ€1. FASEB Journal, 2003, 17, 2068-2081.	0.2	147
5	Inhibitors of clathrin-dependent endocytosis enhance $TGF\hat{l}^2$ signaling and responses. Journal of Cell Science, 2009, 122, 1863-1871.	1.2	113
6	Interactions of High Affinity Insulin-like Growth Factor-binding Proteins with the Type V Transforming Growth Factor-Î ² Receptor in Mink Lung Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 6711-6717.	1.6	98
7	Synthetic TGFâ€Î² antagonist accelerates wound healing and reduces scarring. FASEB Journal, 2002, 16, 1269-1270.	0.2	91
8	Cholesterol suppresses cellular TGF- \hat{l}^2 responsiveness: implications in atherogenesis. Journal of Cell Science, 2007, 120, 3509-3521.	1.2	85
9	Cholesterol modulates cellular TGFâ€Î² responsiveness by altering TGFâ€Î² binding to TGFâ€Î² receptors. Journal of Cellular Physiology, 2008, 215, 223-233.	2.0	67
10	Cellular Heparan Sulfate Negatively Modulates Transforming Growth Factor-Î ² 1 (TGF-Î ² 1) Responsiveness in Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 11506-11514.	1.6	61
11	LRPâ€1/TβRâ€V mediates TGFâ€Î²1â€induced growth inhibition in CHO cells. FEBS Letters, 2004, 562, 71-78.	1.3	52
12	Expression of a new type high molecular weight receptor (type V receptor) of transforming growth factor \hat{I}^2 in normal and transformed cells. Biochemical and Biophysical Research Communications, 1991, 179, 378-385.	1.0	38
13	Function of the Type V Transforming Growth Factor \hat{l}^2 Receptor in Transforming Growth Factor \hat{l}^2 -induced Growth Inhibition of Mink Lung Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 18891-18895.	1.6	38
14	Transforming Growth Factor ॆ Peptide Antagonists and Their Conversion to Partial Agonists. Journal of Biological Chemistry, 1997, 272, 27155-27159.	1.6	37
15	Identification of insulin receptor substrate proteins as key molecules for the TβRâ€V/LRPâ€1â€mediated growth inhibitory signaling cascade in epithelial and myeloid cells. FASEB Journal, 2004, 18, 1719-1721.	0.2	33
16	A mechanism by which dietary trans fats cause atherosclerosis. Journal of Nutritional Biochemistry, 2011, 22, 649-655.	1.9	31
17	CRSBP-1/LYVE-1 ligands disrupt lymphatic intercellular adhesion by inducing tyrosine phosphorylation and internalization of VE-cadherin. Journal of Cell Science, 2011, 124, 1231-1244.	1.2	30
18	Identification of the High Affinity Binding Site in Transforming Growth Factor- \hat{l}^2 Involved in Complex Formation with $\hat{l}\pm 2$ -Macroglobulin. Journal of Biological Chemistry, 2001, 276, 46212-46218.	1.6	28

#	Article	IF	CITATIONS
19	An Active Site of Transforming Growth Factor $\hat{l}^2 1$ for Growth Inhibition and Stimulation. Journal of Biological Chemistry, 1999, 274, 27754-27758.	1.6	22
20	Identification, Purification, and Characterization of Cell-surface Retention Sequence-binding Proteins from Human SK-Hep Cells and Bovine Liver Plasma Membranes. Journal of Biological Chemistry, 1995, 270, 1807-1816.	1.6	21
21	Cloning, Expression, Characterization, and Role in Autocrine Cell Growth of Cell Surface Retention Sequence Binding Protein-1. Journal of Biological Chemistry, 2003, 278, 43855-43869.	1.6	20
22	Suramin enters and accumulates in low pH intracellular compartments of ν -sis-transformed NIH 3T3 cells. FEBS Letters, 1997, 416, 297-301.	1.3	17
23	Cellular growth inhibition by TGF-Î ² 1involves IRS proteins. FEBS Letters, 2004, 565, 117-121.	1.3	17
24	Ethanol Enhances TGFâ€Î² Activity by Recruiting TGFâ€Î² Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Nonâ€Lipid Raft Microdomains. Journal of Cellular Biochemistry, 2016, 117, 860-871.	1.2	16
25	Cell Surface Retention Sequence Binding Protein-1 Interacts with the v-sis Gene Product and Platelet-derived Growth Factor \hat{l}^2 -Type Receptor in Simian Sarcoma Virus-transformed Cells. Journal of Biological Chemistry, 1999, 274, 10582-10589.	1.6	14
26	7â€Dehydrocholesterol (7â€DHC), But Not Cholesterol, Causes Suppression of Canonical TGFâ€Î² Signaling and Is Likely Involved in the Development of Atherosclerotic Cardiovascular Disease (ASCVD). Journal of Cellular Biochemistry, 2017, 118, 1387-1400.	1.2	14
27	The Mannose 6-Phosphate/Insulin-like Growth Factor-II Receptor Is a Substrate of Type V Transforming Growth Factor-Î ² Receptor. Journal of Biological Chemistry, 1999, 274, 20002-20010.	1.6	12
28	Fatty acids modulate transforming growth factorâ€Î² activity and plasma clearance. FASEB Journal, 2003, 17, 1-20.	0.2	12
29	Identification and Characterization of the Acidic pH Binding Sites for Growth Regulatory Ligands of Low Density Lipoprotein Receptor-related Protein-1. Journal of Biological Chemistry, 2004, 279, 38736-38748.	1.6	12
30	DMSO Enhances TGF $\hat{\mathbf{e}}\hat{\mathbf{f}}^2$ Activity by Recruiting the Type II TGF $\hat{\mathbf{e}}\hat{\mathbf{f}}^2$ Receptor From Intracellular Vesicles to the Plasma Membrane. Journal of Cellular Biochemistry, 2016, 117, 1568-1579.	1.2	12
31	CRSBPâ€1/LYVEâ€1 ligands stimulate contraction of the CRSBPâ€1â€associated ER network in lymphatic endothelial cells. FEBS Letters, 2012, 586, 1480-1487.	1.3	11
32	IGFBPâ€3 and TGFâ€Î² inhibit growth in epithelial cells by stimulating type V TGFâ€Î² receptor (TβRâ€V)â€mediat tumor suppressor signaling. FASEB BioAdvances, 2021, 3, 709-729.	ed 1.3	4
33	Development of the LYVEâ€1 gene with an acidicâ€aminoâ€acidâ€rich (AAAR) domain in evolution is associated with acquisition of lymph nodes and efficient adaptive immunity. Journal of Cellular Physiology, 2018, 233, 2681-2692.	2.0	3
34	The Ortholog of LYVE-1 Is Required for Thoracic Duct Formation in Zebrafish*. CellBio, 2013, 02, 228-247.	1.3	3