
Jerzy Wielbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952734/publications.pdf Version: 2024-02-01

IEDZY WIELBO

#	Article	IF	CITATIONS
1	The Effect of a Preparation Containing Rhizobial Nod Factors on Pea Morphological Traits and Physiology. Agronomy, 2021, 11, 1457.	3.0	2
2	Genetic and physiological diversity of white Spanish broom (Chamaecytisus albus) endophytes. Acta Biochimica Polonica, 2021, 68, 419-426.	0.5	0
3	Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum Symbiovar viciae. Frontiers in Plant Science, 2021, 12, 719987.	3.6	4
4	Recent Advances in Biological Nitrogen Fixation. Agronomy, 2021, 11, 1941.	3.0	0
5	Multimodal Spectroscopic Imaging of Pea Root Nodules to Assess the Nitrogen Fixation in the Presence of Biofertilizer Based on Nod-Factors. International Journal of Molecular Sciences, 2021, 22, 12991.	4.1	4
6	Combined Effect of Light and Nutrients on the Micromorphology of the White rot Fungus Cerrena unicolor. International Journal of Molecular Sciences, 2020, 21, 1678.	4.1	6
7	Current Research Trends in Biological Science Vol. 2. , 2020, , .		0
8	The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. PLoS ONE, 2019, 14, e0211744.	2.5	23
9	RNA Sequencing Reveals Differential Gene Expression of Cerrena Unicolor in Response to Variable Lighting Conditions. International Journal of Molecular Sciences, 2019, 20, 290.	4.1	10
10	Nod factors improve the nitrogen content and rhizobial diversity of faba bean and alter soil dehydrogenase, protease, and acid phosphomonoesterase activities. International Agrophysics, 2019, 1, 9-15.	1.7	2
11	Comparative transcriptomic analysis of Cerrena unicolor revealed differential expression of genes engaged in degradation of various kinds of wood. Microbiological Research, 2018, 207, 256-268.	5.3	18
12	Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. International Journal of Environmental Science and Technology, 2018, 15, 755-764.	3.5	8
13	Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis – response to oxalic acid. Microbiological Research, 2017, 199, 79-88.	5.3	9
14	Electrophoretic profiles of lipopolysaccharides from Rhizobium strains nodulating Pisum sativum do not reflect phylogenetic relationships between these strains. Archives of Microbiology, 2017, 199, 1011-1021.	2.2	2
15	Flavonoids and Nod Factors: Importance in Legume-Microbe Interactions and Legume Improvement. , 2017, , 75-94.		1
16	Ocena wpÅ,ywu molibdenu i lipochitooligosacharydów na plonowanie grochu siewnego. Przemysl Chemiczny, 2017, 1, 191-194.	0.0	0
17	Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. International Journal of Biological Macromolecules, 2016, 92, 138-147.	7.5	31
18	The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity. Microbes and Environments, 2015, 30, 254-261.	1.6	11

#	Article	IF	CITATIONS
19	High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland. Standards in Genomic Sciences, 2015, 10, 36.	1.5	3
20	The response of rhizosphere microbial properties to flavonoids and Nod factors. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 125-131.	0.6	4
21	Increased genetic diversity in the populations of Echium vulgare L. colonising Zn–Pb waste heaps. Biochemical Systematics and Ecology, 2015, 60, 28-36.	1.3	12

 $_{22}$ Effect of Sulfur and Nod Factors (LCOs) on Some Physiological Features and Yield of Pea (Pisum) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 6

23	Symbiotic Activity of Pea (Pisum sativum) after Application of Nod Factors under Field Conditions. International Journal of Molecular Sciences, 2014, 15, 7344-7351.	4.1	7
24	The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Open Life Sciences, 2014, 9, 396-409.	1.4	2
25	Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii. Journal of Applied Genetics, 2014, 55, 515-527.	1.9	12
26	Nodulation competitiveness of Ensifer meliloti alfalfa Nodule Isolates and Their Potential for Application as Inoculants. Polish Journal of Microbiology, 2014, 63, 357-386.	1.7	6
27	Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities. Archives of Microbiology, 2013, 195, 255-267.	2.2	25
28	Pea growth and symbiotic activity response to Nod factors (lipo-chitooligosaccharides) and soil compaction. Applied Soil Ecology, 2013, 72, 181-186.	4.3	17
29	Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Systematic and Applied Microbiology, 2013, 36, 252-258.	2.8	28
30	Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida). Journal of Invertebrate Pathology, 2012, 109, 83-90.	3.2	28
31	The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Open Life Sciences, 2012, 7, 13-24.	1.4	5
32	Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiological Research, 2012, 167, 144-150.	5.3	35
33	Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Open Life Sciences, 2012, 7, 363-372.	1.4	13
34	repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: Incompatibility and evolutionary analyses. Plasmid, 2011, 66, 53-66.	1.4	17
35	Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates. BMC Microbiology, 2011, 11, 123.	3.3	37
36	Competitiveness of Rhizobium leguminosarum bv. trifolii Strains in Mixed Inoculation of Clover (Trifolium pratense). Polish Journal of Microbiology, 2011, 60, 43-49.	1.7	6

JERZY WIELBO

#	Article	IF	CITATIONS
37	The Structure and Metabolic Diversity of Population of Pea Microsymbionts Isolated from Root Nodules. British Microbiology Research Journal, 2011, 1, 55-69.	0.2	7
38	Symbiosis-stage associated alterations in quorum sensing autoinducer molecules biosynthesis in Sinorhizobium meliloti. Plant and Soil, 2010, 329, 399-410.	3.7	11
39	The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis. Plant and Soil, 2010, 337, 125-135.	3.7	22
40	Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 2010, 165, 50-60.	5.3	70
41	Genetic and Metabolic Divergence within a <i>Rhizobium leguminosarum</i> bv. <i>trifolii</i> Population Recovered from Clover Nodules. Applied and Environmental Microbiology, 2010, 76, 4593-4600.	3.1	30
42	Enhancing Rhizobium–Legume Symbiosis Using Signaling Factors. , 2010, , 27-54.		17
43	Pretreatment of Clover Seeds with Nod Factors Improves Growth and Nodulation of Trifolium pratense. Journal of Chemical Ecology, 2009, 35, 479-487.	1.8	19
44	Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of <i>Rhizobium leguminosarum</i> bv. <i>Trifolii</i> TA1 with clover <i>(Trifolium pratense)</i> . Acta Biologica Hungarica, 2008, 59, 115-127.	0.7	8
45	Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Canadian Journal of Microbiology, 2007, 53, 957-967.	1.7	57
46	Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Archives of Microbiology, 2004, 182, 331-336.	2.2	20
47	Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii. Canadian Journal of Microbiology, 2004, 50, 201-211.	1.7	15
48	Rhizobium leguminosarum bv. trifolii PssP Protein Is Required for Exopolysaccharide Biosynthesis and Polymerization. Molecular Plant-Microbe Interactions, 2002, 15, 388-397.	2.6	31
49	Mutation in the pssB-pssA intergenic region of Rhizobium leguminosarum bv. trifolii affects the surface polysaccharides synthesis and nitrogen fixation ability. Journal of Plant Physiology, 2001, 158, 1565-1574.	3.5	14
50	Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Journal of Microbiological Methods, 2001, 45, 197-205.	1.6	24
51	Molecular Characterization of pssCDE Genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD Mutant Is Affected in Exopolysaccharide Synthesis and Endocytosis of Bacteria. Molecular Plant-Microbe Interactions, 1998, 11, 1142-1148.	2.6	35