Jerzy Wielbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952734/publications.pdf

Version: 2024-02-01

		471509	552781
51	770	17	26
papers	citations	h-index	g-index
52	52	52	855
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 2010, 165, 50-60.	5.3	70
2	Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Canadian Journal of Microbiology, 2007, 53, 957-967.	1.7	57
3	Intragenomic diversity of Rhizobium leguminosarum bv. trifolii clover nodule isolates. BMC Microbiology, 2011, 11, 123.	3.3	37
4	Molecular Characterization of pssCDE Genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD Mutant Is Affected in Exopolysaccharide Synthesis and Endocytosis of Bacteria. Molecular Plant-Microbe Interactions, 1998, 11, 1142-1148.	2.6	35
5	Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiological Research, 2012, 167, 144-150.	5. 3	35
6	Rhizobium leguminosarum bv. trifolii PssP Protein Is Required for Exopolysaccharide Biosynthesis and Polymerization. Molecular Plant-Microbe Interactions, 2002, 15, 388-397.	2.6	31
7	Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. International Journal of Biological Macromolecules, 2016, 92, 138-147.	7.5	31
8	Genetic and Metabolic Divergence within a <i>Rhizobium leguminosarum</i> bv. <i>trifolii</i> Population Recovered from Clover Nodules. Applied and Environmental Microbiology, 2010, 76, 4593-4600.	3.1	30
9	Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida). Journal of Invertebrate Pathology, 2012, 109, 83-90.	3.2	28
10	Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Systematic and Applied Microbiology, 2013, 36, 252-258.	2.8	28
11	Phenotype profiling of Rhizobium leguminosarum bv. trifolii clover nodule isolates reveal their both versatile and specialized metabolic capabilities. Archives of Microbiology, 2013, 195, 255-267.	2.2	25
12	Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Journal of Microbiological Methods, 2001, 45, 197-205.	1.6	24
13	The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. PLoS ONE, 2019, 14, e0211744.	2.5	23
14	The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis. Plant and Soil, 2010, 337, 125-135.	3.7	22
15	Complexity of phenotypes and symbiotic behaviour of Rhizobium leguminosarum biovar trifolii exopolysaccharide mutants. Archives of Microbiology, 2004, 182, 331-336.	2.2	20
16	Pretreatment of Clover Seeds with Nod Factors Improves Growth and Nodulation of Trifolium pratense. Journal of Chemical Ecology, 2009, 35, 479-487.	1.8	19
17	Comparative transcriptomic analysis of Cerrena unicolor revealed differential expression of genes engaged in degradation of various kinds of wood. Microbiological Research, 2018, 207, 256-268.	5. 3	18
18	Enhancing Rhizobium–Legume Symbiosis Using Signaling Factors. , 2010, , 27-54.		17

#	Article	IF	CITATIONS
19	repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: Incompatibility and evolutionary analyses. Plasmid, 2011, 66, 53-66.	1.4	17
20	Pea growth and symbiotic activity response to Nod factors (lipo-chitooligosaccharides) and soil compaction. Applied Soil Ecology, 2013, 72, 181-186.	4.3	17
21	Environmental modulation of the pssTNOP gene expression in Rhizobium leguminosarum bv. trifolii. Canadian Journal of Microbiology, 2004, 50, 201-211.	1.7	15
22	Mutation in the pssB-pssA intergenic region of Rhizobium leguminosarum bv. trifolii affects the surface polysaccharides synthesis and nitrogen fixation ability. Journal of Plant Physiology, 2001, 158, 1565-1574.	3.5	14
23	Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Open Life Sciences, 2012, 7, 363-372.	1.4	13
24	Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii. Journal of Applied Genetics, 2014, 55, 515-527.	1.9	12
25	Increased genetic diversity in the populations of Echium vulgare L. colonising Zn–Pb waste heaps. Biochemical Systematics and Ecology, 2015, 60, 28-36.	1.3	12
26	Symbiosis-stage associated alterations in quorum sensing autoinducer molecules biosynthesis in Sinorhizobium meliloti. Plant and Soil, 2010, 329, 399-410.	3.7	11
27	The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity. Microbes and Environments, 2015, 30, 254-261.	1.6	11
28	RNA Sequencing Reveals Differential Gene Expression of Cerrena Unicolor in Response to Variable Lighting Conditions. International Journal of Molecular Sciences, 2019, 20, 290.	4.1	10
29	Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis – response to oxalic acid. Microbiological Research, 2017, 199, 79-88.	5. 3	9
30	Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of <i>Rhizobium leguminosarum </i> bv. <i>Trifolii </i> TA1 with clover <i>(Trifolium pratense) </i> Acta Biologica Hungarica, 2008, 59, 115-127.	0.7	8
31	Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. International Journal of Environmental Science and Technology, 2018, 15, 755-764.	3.5	8
32	Symbiotic Activity of Pea (Pisum sativum) after Application of Nod Factors under Field Conditions. International Journal of Molecular Sciences, 2014, 15, 7344-7351.	4.1	7
33	The Structure and Metabolic Diversity of Population of Pea Microsymbionts Isolated from Root Nodules. British Microbiology Research Journal, 2011, 1, 55-69.	0.2	7
34	Combined Effect of Light and Nutrients on the Micromorphology of the White rot Fungus Cerrena unicolor. International Journal of Molecular Sciences, 2020, 21, 1678.	4.1	6
35	Competitiveness of Rhizobium leguminosarum bv. trifolii Strains in Mixed Inoculation of Clover (Trifolium pratense). Polish Journal of Microbiology, 2011, 60, 43-49.	1.7	6
36	Nodulation competitiveness of Ensifer meliloti alfalfa Nodule Isolates and Their Potential for Application as Inoculants. Polish Journal of Microbiology, 2014, 63, 357-386.	1.7	6

#	Article	IF	CITATIONS
37	The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Open Life Sciences, 2012, 7, 13-24.	1.4	5
38	The response of rhizosphere microbial properties to flavonoids and Nod factors. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 125-131.	0.6	4
39	Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum Symbiovar viciae. Frontiers in Plant Science, 2021, 12, 719987.	3.6	4
40	Multimodal Spectroscopic Imaging of Pea Root Nodules to Assess the Nitrogen Fixation in the Presence of Biofertilizer Based on Nod-Factors. International Journal of Molecular Sciences, 2021, 22, 12991.	4.1	4
41	High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland. Standards in Genomic Sciences, 2015, 10, 36.	1.5	3
42	The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Open Life Sciences, 2014, 9, 396-409.	1.4	2
43	Electrophoretic profiles of lipopolysaccharides from Rhizobium strains nodulating Pisum sativum do not reflect phylogenetic relationships between these strains. Archives of Microbiology, 2017, 199, 1011-1021.	2.2	2
44	The Effect of a Preparation Containing Rhizobial Nod Factors on Pea Morphological Traits and Physiology. Agronomy, 2021, 11, 1457.	3.0	2
45	Nod factors improve the nitrogen content and rhizobial diversity of faba bean and alter soil dehydrogenase, protease, and acid phosphomonoesterase activities. International Agrophysics, 2019, 1, 9-15.	1.7	2
46	Flavonoids and Nod Factors: Importance in Legume-Microbe Interactions and Legume Improvement. , 2017, , 75-94.		1
47	Effect of Sulfur and Nod Factors (LCOs) on Some Physiological Features and Yield of Pea (Pisum) Tj ETQq1 1 0.78	34314 rgBT 0.1	 Overlock
48	Genetic and physiological diversity of white Spanish broom (Chamaecytisus albus) endophytes. Acta Biochimica Polonica, 2021, 68, 419-426.	0.5	0
49	Recent Advances in Biological Nitrogen Fixation. Agronomy, 2021, 11, 1941.	3.0	0
50	Ocena wpÅ,ywu molibdenu i lipochitooligosacharydów na plonowanie grochu siewnego. Przemysl Chemiczny, 2017, 1, 191-194.	0.0	0
51	Current Research Trends in Biological Science Vol. 2. , 2020, , .		0