
Hossein Barani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on Applications of Liposomes in Textile Processing. Journal of Liposome Research, 2008, 18, 249-262.	3.3	81
2	Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. Journal of Photochemistry and Photobiology B: Biology, 2018, 179, 98-104.	3.8	77
3	In situ synthesis of nano silver/lecithin on wool: Enhancing nanoparticles diffusion. Colloids and Surfaces B: Biointerfaces, 2012, 92, 9-15.	5.0	75
4	Preparation of antibacterial coating based on in situ synthesis of ZnO/SiO 2 hybrid nanocomposite on cotton fabric. Applied Surface Science, 2014, 320, 429-434.	6.1	51
5	Plasma and Ultrasonic Process in Dyeing of Wool Fibers with Madder in Presence of Lecithin. Journal of Dispersion Science and Technology, 2011, 32, 1191-1199.	2.4	38
6	Analysis of structural transformation in wool fiber resulting from oxygen plasma treatment using vibrational spectroscopy. Journal of Molecular Structure, 2015, 1079, 35-40.	3.6	38
7	Effects of Oxygen Plasma Treatment on the Physical and Chemical Properties of Wool Fiber Surface. Plasma Chemistry and Plasma Processing, 2014, 34, 1291-1302.	2.4	35
8	Synthesis of Ag-liposome nano composites. Journal of Liposome Research, 2010, 20, 323-329.	3.3	33
9	Nano silver entrapped in phospholipids membrane: Synthesis, characteristics and antibacterial kinetics. Molecular Membrane Biology, 2011, 28, 206-215.	2.0	28
10	Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: Preparation and characterization. Materials Science and Engineering C, 2014, 43, 50-57.	7.3	26
11	In situ synthesis of silver nanoparticles onto cotton fibres modified with plasma treatment and acrylic acid grafting. Micro and Nano Letters, 2013, 8, 315-318.	1.3	25
12	Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics. Fibers and Polymers, 2017, 18, 658-665.	2.1	24
13	Biosynthesis of Silver Nanoparticles Using Safflower Flower: Structural Characterization, and Its Antibacterial Activity on Applied Wool Fabric. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2525-2532.	3.7	23
14	Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New Journal of Chemistry, 2014, 38, 4365-4370.	2.8	21
15	Optimization of Dyeing Wool Fibers Procedure with <i>Isatis tinctoria</i> by Response Surface Methodology. Journal of Natural Fibers, 2012, 9, 73-86.	3.1	20
16	Surface roughness and wettability of wool fabrics loaded with silver nanoparticles: Influence of synthesis and application methods. Textile Reseach Journal, 2013, 83, 1310-1318.	2.2	18
17	Preparation of polyacrylonitrile and cellulose acetate blend fibers through wet-spinning. Journal of Applied Polymer Science, 2007, 103, 2000-2005.	2.6	17
18	Investigation on polyacrylonitrile/cellulose acetate blends. Macromolecular Research, 2007, 15, 605-609.	2.4	17

Hossein Barani

#	Article	IF	CITATIONS
19	Morphological and mechanical properties of drawn poly(<scp>l</scp> â€lactide) electrospun twisted yarns. Polymer Engineering and Science, 2018, 58, 1091-1096.	3.1	17
20	Comparative study of electrically conductive cotton fabric prepared through the in situ synthesis of different conductive materials. Cellulose, 2021, 28, 6629.	4.9	17
21	Analysis of lecithin treatment effects on the structural transformation of wool fiber using vibrational spectroscopy. International Journal of Biological Macromolecules, 2018, 108, 585-590.	7.5	15
22	Using microwave irradiation to catalyze the in-situ manufacturing of silver nanoparticles on cotton fabric for antibacterial and UV-protective application. Cellulose, 2020, 27, 9105-9121.	4.9	15
23	The Dyeing Procedures Evaluation of Wool Fibers with <i>Prangos ferulacea</i> and Fastness Characteristics. Advances in Materials Science and Engineering, 2014, 2014, 1-6.	1.8	13
24	Physical and morphological characterisation of poly(L-lactide) acid-based electrospun fibrous structures: tunning solution properties. Plastics, Rubber and Composites, 2018, 47, 438-446.	2.0	13
25	Influence of dyeing conditions of natural dye extracted from Berberis integerrima fruit on color shade of woolen yarn. Journal of Natural Fibers, 2019, 16, 524-535.	3.1	12
26	Microwave-Assisted Synthesis of Silver Nanoparticles: Effect of Reaction Temperature and Precursor Concentration on Fluorescent Property. Journal of Cluster Science, 2020, , 1.	3.3	12
27	Stability of colloidal silver nanoparticles trapped in lipid bilayer: effect of lecithin concentration and applied temperature. IET Nanobiotechnology, 2014, 8, 282-289.	3.8	10
28	Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic) Tj ETQqC	0 0 0 rgBT /0 1:4	Overlock 10 Ti
29	Characterization and Release Behavior of a Thiosemicarbazone from Electrospun Polyvinyl Alcohol Core-Shell Nanofibers. Polymers, 2020, 12, 1488.	4.5	10
30	Red cabbage anthocyanins content as a natural colorant for obtaining different color on wool fibers. Pigment and Resin Technology, 2020, 49, 229-238.	0.9	9
31	Sustained release of a thiosemicarbazone from antibacterial electrospun poly(lactic oâ€glycolic acid) fiber mats. Polymers for Advanced Technologies, 2020, 31, 3182-3193.	3.2	8
32	Palladium Nanoparticles-Decorated β-Cyclodextrin–Cyanoguanidine Modified Graphene Oxide: A Heterogeneous Nanocatalyst for Suzuki–Miyaura Coupling and Reduction of 4-Nitrophenol Reactions in Aqueous Media. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 791-802.	3.7	6
33	Simultaneous Synthesis of Silver Nanoparticles and Natural Indigo Dyeing of Wool Fiber. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1153-1161.	3.7	4
34	Application of Nano Silver/Lecithin on Wool through Various Methods: Antibacterial Properties and Cell Toxicity. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	1.0	3
35	Alkaline treatment effect on the properties of inâ€situ synthesised ZnO nanoparticles on cotton fabric. IET Nanobiotechnology, 2016, 10, 162-168.	3.8	3
36	Biocompatible Stabilize Silver Nanoparticles and Their Antimicrobial Activity. Advanced Science	0.2	3

Letters, 2016, 22, 616-621.