Stephanie Lacour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nature Biotechnology, 2022, 40, 198-208.	9.4	48
2	Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. Advanced Materials, 2022, 34, e2201129.	11.1	41
3	Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Science Robotics, 2022, 7, eabk2378.	9.9	7
4	Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115857119.	3.3	27
5	Comparison of Responses to DCN vs. VCN Stimulation in a Mouse Model of the Auditory Brainstem Implant (ABI). JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 391-412.	0.9	2
6	Microfabricated ultra-sensitive permeation sensors for real-time monitoring of compliant implantable bioelectronics. , 2022, , .		0
7	Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nature Neuroscience, 2022, 25, 924-934.	7.1	30
8	Nanoscale Controlled Oxidation of Liquid Metals for Stretchable Electronics and Photonics. Advanced Functional Materials, 2021, 31, 2006711.	7.8	14
9	Electronic Skins for Healthcare Monitoring and Smart Prostheses. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 629-650.	7.5	12
10	Epineural optogenetic activation of nociceptors initiates and amplifies inflammation. Nature Biotechnology, 2021, 39, 179-185.	9.4	54
11	Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature, 2021, 590, 308-314.	13.7	96
12	Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nature Communications, 2021, 12, 435.	5.8	92
13	Compliant peripheral nerve interfaces. Journal of Neural Engineering, 2021, 18, 031001.	1.8	33
14	MRIâ€Compatible and Conformal Electrocorticography Grids for Translational Research. Advanced Science, 2021, 8, 2003761.	5.6	33
15	A 16-Channel Wireless Neural Recording System-on-Chip with CHT Feature Extraction Processor in 65nm CMOS. , 2021, , .		1
16	Dimensional scaling of thin-film stimulation electrode systems in translational research. Journal of Neural Engineering, 2021, 18, 046054.	1.8	2
17	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	15.6	144
18	Microscale Liquid Metal Conductors for Stretchable and Transparent Electronics. Advanced Materials Technologies, 2021, 6, 2100690.	3.0	16

#	Article	IF	CITATIONS
19	Extended Barrier Lifetime of Partially Cracked Organic/Inorganic Multilayers for Compliant Implantable Electronics. Small, 2021, 17, e2103039.	5.2	20
20	Bioinspired liquid metal based sensing system for compliance detection. , 2021, , .		0
21	Intrafascicular peripheral nerve stimulation produces fine functional hand movements in primates. Science Translational Medicine, 2021, 13, eabg6463.	5.8	30
22	Editorial overview: Tissue, cell and pathway engineering: bioinspired, biomimetic and hybrid neural interfaces. Current Opinion in Biotechnology, 2021, 72, iii-iv.	3.3	0
23	Three-Dimensional Surface Reconstruction of the Human Cochlear Nucleus: Implications for Auditory Brain Stem Implant Design. Journal of Neurological Surgery, Part B: Skull Base, 2020, 81, 114-120.	0.4	2
24	Closed-Loop Haptic Feedback Control Using a Self-Sensing Soft Pneumatic Actuator Skin. Soft Robotics, 2020, 7, 22-29.	4.6	98
25	Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. Advanced Materials, 2020, 32, e1903904.	11.1	70
26	Development and Evaluation of a Sensor Glove to Detect Grasp Intention for a Wearable Robotic Hand Exoskeleton. , 2020, , .		7
27	Structured nanoscale metallic glass fibres with extreme aspect ratios. Nature Nanotechnology, 2020, 15, 875-882.	15.6	59
28	Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation. Neuron, 2020, 108, 238-258.	3.8	49
29	Bioelectronic Interfaces: Soft, Implantable Bioelectronic Interfaces for Translational Research (Adv.) Tj ETQq1 1 C	0.784314 r	gBŢ /Overloc
30	Soft, Implantable Bioelectronic Interfaces for Translational Research. Advanced Materials, 2020, 32, e1906512.	11.1	67
31	Soft Printable Electrode Coating for Neural Interfaces. ACS Applied Bio Materials, 2020, 3, 4388-4397.	2.3	33
32	A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. Journal of Neural Engineering, 2020, 17, 046019.	1.8	27
33	Galliumâ€Based Thin Films for Wearable Human Motion Sensors. Advanced Intelligent Systems, 2019, 1, 1900079.	3.3	35
34	Bi-modal control of vacuum-powered soft pneumatic actuators with embedded liquid metal-based strain sensitive skin. , 2019, , .		4
35	Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Science Translational Medicine, 2019, 11, .	5.8	47
36	Conformable bioelectronic interfaces: Mapping the road ahead. Science Translational Medicine, 2019, 11, .	5.8	49

#	Article	IF	CITATIONS
37	Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications. Accounts of Chemical Research, 2019, 52, 534-544.	7.6	66
38	Thin Hydrogel–Elastomer Multilayer Encapsulation for Soft Electronics. Advanced Materials Technologies, 2019, 4, 1900331.	3.0	28
39	Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hearing Research, 2019, 377, 339-352.	0.9	6
40	Materials chemistry in flexible electronics. Chemical Society Reviews, 2019, 48, 1431-1433.	18.7	122
41	Auditory Brainstem Implants: Recent Progress and Future Perspectives. Frontiers in Neuroscience, 2019, 13, 10.	1.4	58
42	Liquid electromigration in gallium-based biphasic thin films. APL Materials, 2019, 7, .	2.2	10
43	Microfabricated bioelectronic systems for prevention, diagnostics and treatment of neurological disorders. , 2019, , .		2
44	Soft and Wearable Transducers: Opportunities and Challenges for Daily Use. , 2019, , .		0
45	CFD water spray model development and physical parameter study on the evaporative cooling. Applied Thermal Engineering, 2019, 149, 960-974.	3.0	30
46	Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord. Journal of Neural Engineering, 2018, 15, 026024.	1.8	41
47	Uniaxial strain of cultured mouse and rat cardiomyocyte strands slows conduction more when its axis is parallel to impulse propagation than when it is perpendicular. Acta Physiologica, 2018, 223, e13026.	1.8	8
48	In vitro evaluation of gelâ€encapsulated adipose derived stem cells: Biochemical cues for in vivo peripheral nerve repair. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 676-686.	1.3	15
49	Optical cuff for optogenetic control of the peripheral nervous system. Journal of Neural Engineering, 2018, 15, 015002.	1.8	29
50	Selective Recruitment of Arm Motoneurons in Nonhuman Primates Using Epidural Electrical Stimulation of the Cervical Spinal Cord. , 2018, 2018, 1424-1427.		10
51	Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model. , 2018, 2018, 1432-1435.		8
52	Thin Metal Films: A Method to Form Smooth Films of Liquid Metal Supported by Elastomeric Substrate (Adv. Sci. 10/2018). Advanced Science, 2018, 5, 1870060.	5.6	0
53	A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nature Communications, 2018, 9, 4403.	5.8	38
54	A Method to Form Smooth Films of Liquid Metal Supported by Elastomeric Substrate. Advanced Science, 2018, 5, 1800256.	5.6	26

#	Article	IF	CITATIONS
55	Controlled Subâ€Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing. Advanced Functional Materials, 2017, 27, 1605935.	7.8	47
56	Electronic Dura Mater Meddling in the Central Nervous System. JAMA Neurology, 2017, 74, 470.	4.5	14
57	Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mechanics Letters, 2017, 15, 63-69.	2.0	26
58	49-1:Invited Paper: Large-Area Tactile Skins Prepared with Thin-Film Technology. Digest of Technical Papers SID International Symposium, 2016, 47, 660-663.	0.1	0
59	Biphasic Metal Films: Intrinsically Stretchable Biphasic (Solid–Liquid) Thin Metal Films (Adv. Mater.) Tj ETQq1 1	0.784314 11.1	rgBT /Overlo
60	Design and functional evaluation of an epidermal strain sensing system for hand tracking. , 2016, , .		7
61	A wireless system with stimulation and recording capabilities for interfacing peripheral nerves in rodents. , 2016, 2016, 4439-4442.		7
62	Mechanically Compliant Neural Interfaces. Microsystems and Nanosystems, 2016, , 257-273.	0.1	2
63	Materials and technologies for soft implantable neuroprostheses. Nature Reviews Materials, 2016, 1, .	23.3	485
64	MPS 11-08 Low power programmable pulse current source for wireless nerve stimulation and recording in small rodent. Journal of Hypertension, 2016, 34, e271.	0.3	1
65	Performance of Indium Callium Zinc Oxide Thin-Film Transistors in Saline Solution. Journal of Electronic Materials, 2016, 45, 3192-3194.	1.0	5
66	Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films. Advanced Materials, 2016, 28, 4507-4512.	11.1	190
67	A regenerative microchannel device for recording multiple singleâ€unit action potentials in awake, ambulatory animals. European Journal of Neuroscience, 2016, 43, 474-485.	1.2	20
68	Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nature Medicine, 2016, 22, 138-145.	15.2	274
69	Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures. Biomaterials, 2016, 89, 14-24.	5.7	67
70	Tactile Prosthetics in WiseSkin. , 2015, , .		3
71	Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Scientific Reports, 2015, 5, 14363.	1.6	59
72	Soft flexion sensors integrating strechable metal conductors on a silicone substrate for smart glove applications. , 2015, , .		14

#	Article	IF	CITATIONS
73	Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications. , 2015, 2015, 8014-7.		8
74	Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways. Brain Research, 2015, 1599, 44-56.	1.1	23
75	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	6.0	845
76	Soft metal constructs for large strain sensor membrane. Smart Materials and Structures, 2015, 24, 035020.	1.8	19
77	Skin health monitoring. Nature Materials, 2015, 14, 659-660.	13.3	9
78	Concurrent photopatterning of elastic modulus and structures in photosensitive silicone elastomers. Extreme Mechanics Letters, 2015, 3, 1-7.	2.0	8
79	Elastomeric Electronic Skin for Prosthetic Tactile Sensation. Advanced Functional Materials, 2015, 25, 2287-2295.	7.8	321
80	Conducting polymer electrodes for auditory brainstem implants. Journal of Materials Chemistry B, 2015, 3, 5021-5027.	2.9	34
81	Research Update: Platinum-elastomer mesocomposite as neural electrode coating. APL Materials, 2015, 3, .	2.2	29
82	Stretchable capacitive tactile skin on humanoid robot fingers — First experiments and results. , 2014, , .		20
83	Hybrid stretchable circuits on silicone substrate. Journal of Applied Physics, 2014, 115, 143511.	1.1	34
84	Implementing MEMS technology for soft, (bio)electronics interfaces. Proceedings of SPIE, 2014, , .	0.8	0
85	Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neuroscience Research, 2014, 78, 21-29.	1.0	47
86	Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration?. Neural Regeneration Research, 2014, 9, 1943.	1.6	81
87	A Microchannel Neuroprosthesis for Bladder Control After Spinal Cord Injury in Rat. Science Translational Medicine, 2013, 5, 210ra155.	5.8	101
88	Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Applied Physics Letters, 2013, 103, .	1.5	111
89	Elastomeric substrates with embedded stiff platforms for stretchable electronics. Applied Physics Letters, 2013, 102, .	1.5	98
90	Interaction of glia with a compliant, microstructured silicone surface. Acta Biomaterialia, 2013, 9, 6936-6942.	4.1	20

#	Article	IF	CITATIONS
91	Use of an Implanted Sacral Nerve Stimulator to Restore Urine Voiding in Chronically Paraplegic Dogs. Journal of Veterinary Internal Medicine, 2013, 27, 99-105.	0.6	17
92	Localization of Folds and Cracks in Thin Metal Films Coated on Flexible Elastomer Foams. Advanced Materials, 2013, 25, 3117-3121.	11.1	72
93	PDMS microchannel regenerative peripheral nerve interface. , 2013, , .		6
94	Elastic dipole antenna prepared with thin metal films on elastomeric substrate. Electronics Letters, 2012, 48, 65.	0.5	6
95	Direct-write conductive fibres for soft electronics. , 2012, , .		0
96	Stretchable antennas. , 2012, , .		14
97	A regenerative microchannel neural interface for recording from and stimulating peripheral axons <i>in vivo</i> . Journal of Neural Engineering, 2012, 9, 016010.	1.8	52
98	High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute <i>in vivo</i> validation. Journal of Neural Engineering, 2012, 9, 026005.	1.8	31
99	Stretchable electrodes for neuroprosthetic interfaces. , 2012, , .		1
100	Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab on A Chip, 2012, 12, 2540.	3.1	58
101	Fabrication and electromechanical characterization of near-field electrospun composite fibers. Nanotechnology, 2012, 23, 105305.	1.3	17
102	Evaluation of an elastomer based gold microelectrode array for neural recording applications. , 2011,		1
103	Microchannel electrode interfaces to assess bladder afferent activity. , 2011, , .		0
104	Evaluation of negative photo-patternable PDMS for the encapsulation of neural electrodes. , 2011, , .		4
105	Microstructured Silicone Substrate for Printable and Stretchable Metallic Films. Langmuir, 2011, 27, 4279-4284.	1.6	71
106	Zinc Oxide Nanowire Rigid Platforms on Elastomeric Substrates. ACS Applied Materials & Interfaces, 2011, 3, 3162-3166.	4.0	10
107	A stretchable PIFA antenna. , 2011, , .		3
108	Elastomeric capacitive sensors. , 2011, , .		6

#	Article	IF	CITATIONS
109	A legal version of the nanoworld. Comptes Rendus Physique, 2011, 12, 693-701.	0.3	3
110	Photopatterning the mechanical properties of polydimethylsiloxane films. Journal of Applied Physics, 2011, 109, 054905.	1.1	48
111	Silicone substrate with <i>in situ</i> strain relief for stretchable thin-film transistors. Applied Physics Letters, 2011, 98, .	1.5	97
112	Elastic components for prosthetic skin. , 2011, 2011, 8373-6.		7
113	Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Medical and Biological Engineering and Computing, 2010, 48, 945-954.	1.6	226
114	Novel use of X-ray micro computed tomography to image rat sciatic nerve and integration into scaffold. Journal of Neuroscience Methods, 2010, 188, 39-44.	1.3	14
115	Complementary organic thin film transistor circuits fabricated directly on silicone substrates. Organic Electronics, 2010, 11, 1815-1820.	1.4	20
116	Fabrication and characterisation of protein fibril–elastomer composites. Acta Biomaterialia, 2010, 6, 1337-1341.	4.1	19
117	Impedance spectroscopy on stretchable microelectrode arrays. Applied Physics Letters, 2010, 97, 043707.	1.5	19
118	Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. Journal of Physics Condensed Matter, 2010, 22, 194114.	0.7	122
119	Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. Journal of Micromechanics and Microengineering, 2010, 20, 055025.	1.5	137
120	Design and fabrication of neural implant with thick microchannels based on flexible polymeric materials. , 2009, 2009, 6400-3.		6
121	Neural sensing of electrical activity with stretchable microelectrode arrays. , 2009, 2009, 4210-3.		4
122	Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes. Applied Physics Letters, 2009, 95, .	1.5	51
123	Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Applied Physics Letters, 2009, 94, .	1.5	213
124	Monitoring Hippocampus Electrical Activity <i>In Vitro</i> on an Elastically Deformable Microelectrode Array. Journal of Neurotrauma, 2009, 26, 1135-1145.	1.7	61
125	Long Micro-Channel Electrode Arrays: A Novel Type of Regenerative Peripheral Nerve Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 454-460.	2.7	65
126	Microchannel Electrodes for Recording and Stimulation:In VitroEvaluation. IEEE Transactions on Biomedical Engineering, 2009, 56, 1524-1534.	2.5	39

#	Article	IF	CITATIONS
127	Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. Journal of Biomedical Materials Research - Part A, 2009, 90A, 648-655.	2.1	103
128	Stretchable touch sensitive keypad. Procedia Chemistry, 2009, 1, 152-155.	0.7	10
129	Stretchable diamond-like carbon microstructures for biomedical applications. Jom, 2009, 61, 53-58.	0.9	5
130	Accuracy of Exhaust Emission Factor Measurements on Chassis Dynamometer. Journal of the Air and Waste Management Association, 2009, 59, 695-703.	0.9	15
131	Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. Journal of Applied Physics, 2009, 106, .	1.1	181
132	A Multifunctional Capacitive Sensor for Stretchable Electronic Skins. IEEE Sensors Journal, 2009, 9, 2008-2009.	2.4	238
133	Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sensors and Actuators A: Physical, 2008, 147, 456-463.	2.0	53
134	Microchannels as Axonal Amplifiers. IEEE Transactions on Biomedical Engineering, 2008, 55, 1136-1146.	2.5	61
135	PbTiO <inf>3</inf> /P(VDF-TrFE) nanocomposites for flexible skin. , 2008, , .		1
136	Recording with microchannel electrodes in a noisy environment. , 2008, 2008, 34-7.		8
137	Morphology and Stretchability of Thin Film Metal Conductors on Elastomeric Substrates. Materials Research Society Symposia Proceedings, 2007, 1009, 1.	0.1	Ο
138	Advances in Encapsulating Elastically Stretchable Microelectrode Arrays. Materials Research Society Symposia Proceedings, 2007, 1009, 1.	0.1	1
139	Stiff subcircuit islands of diamondlike carbon for stretchable electronics. Journal of Applied Physics, 2006, 100, 014913.	1.1	109
140	ELASTOMERIC INTERCONNECTS. International Journal of High Speed Electronics and Systems, 2006, 16, 397-407.	0.3	5
141	Stretchable Dielectric Material for Conformable Bioelectronic Devices. Materials Research Society Symposia Proceedings, 2006, 926, 1.	0.1	2
142	Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Applied Physics Letters, 2006, 89, 073501.	1.5	177
143	Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Applied Physics Letters, 2006, 88, 204103.	1.5	363
144	Fully elastic interconnects on nanopatterned elastomeric substrates. IEEE Electron Device Letters, 2006, 27, 650-652.	2.2	45

#	Article	IF	CITATIONS
145	ELASTOMERIC INTERCONNECTS., 2006, , .		Ο
146	Delocalizing strain in a thin metal film on a polymer substrate. Mechanics of Materials, 2005, 37, 261-273.	1.7	212
147	Compliant thin film patterns of stiff materials as platforms for stretchable electronics. Journal of Materials Research, 2005, 20, 3274-3277.	1.2	157
148	Stretchable micro-electrode arrays for dynamic neuronal recording of in vitro mechanically injured brain. , 2005, , .		17
149	Interconnects for Elastically Stretchable and Deformable Electronic Surfaces. Materials Research Society Symposia Proceedings, 2005, 863, B10.9-1.	0.1	0
150	How Stretchable Can We Make Thin Metal Films?. Materials Research Society Symposia Proceedings, 2005, 875, 1.	0.1	8
151	Stretchable Interconnects for Elastic Electronic Surfaces. Proceedings of the IEEE, 2005, 93, 1459-1467.	16.4	558
152	Stretchability of thin metal films on elastomer substrates. Applied Physics Letters, 2004, 85, 3435-3437.	1.5	291
153	Stretchable wavy metal interconnects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1723-1725.	0.9	144
154	Stretchability of complex patterns of thin metal conductors on elastomeric skin. Materials Research Society Symposia Proceedings, 2004, 854, U12.10.1.	0.1	2
155	Mechatronic system of dielectric elastomer actuators addressed by thin film photoconductors on plastic. Sensors and Actuators A: Physical, 2004, 111, 288-292.	2.0	47
156	Electronic skin: architecture and components. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 326-334.	1.3	275
157	An Elastically Stretchable TFT Circuit. IEEE Electron Device Letters, 2004, 25, 792-794.	2.2	53
158	Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits. IEEE Electron Device Letters, 2004, 25, 179-181.	2.2	230
159	High voltage photoconductive switches of amorphous silicon for electroactive polymer actuators. Journal of Non-Crystalline Solids, 2004, 338-340, 736-739.	1.5	9
160	Super-elastic Gold Conductors on Elastomeric Substrates. Materials Research Society Symposia Proceedings, 2003, 769, 1031.	0.1	12
161	Stretchable gold conductors on elastomeric substrates. Applied Physics Letters, 2003, 82, 2404-2406.	1.5	810
162	Photoconductive high-voltage switches of thin film amorphous silicon for EAP actuators. , 2003, , .		9

Photoconductive high-voltage switches of thin film amorphous silicon for EAP actuators. , 2003, , . 162

#	Article	IF	CITATIONS
163	Stretchable conductors: thin gold films on silicone elastomer. Materials Research Society Symposia Proceedings, 2003, 795, 415.	0.1	7
164	A Method for Making Elastic Metal Interconnects. Materials Research Society Symposia Proceedings, 2003, 769, 6121.	0.1	11
165	Thin film transistor circuits integrated onto elastomeric substrates for elastically stretchable electronics. , 0, , .		4
166	Architecture, Fabrication, and Properties of Stretchable Micro-Electrode Arrays. , 0, , .		4
167	Active force generation contributes to the complexity of spontaneous activity and to the response to stretch of murine cardiomyocyte cultures. Journal of Physiology, 0, , .	1.3	0