Monika Maurhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/195260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative Effects of Rhizobacteria Association on Plant Recruitment of Generalist Predators. Plants, 2022, 11, 920.	3.5	0
2	The secret life of plantâ€beneficial rhizosphere bacteria: insects as alternative hosts. Environmental Microbiology, 2022, 24, 3273-3289.	3.8	19
3	Pivotal role of O-antigenic polysaccharide display in the sensitivity against phage tail-like particles in environmental <i>Pseudomonas</i> kin competition. ISME Journal, 2022, 16, 1683-1693.	9.8	16
4	Effects of Root-Colonizing Fluorescent Pseudomonas Strains on Arabidopsis Resistance to a Pathogen and an Herbivore. Applied and Environmental Microbiology, 2021, 87, e0283120.	3.1	10
5	Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insectâ€killing abilities and genetic variations in insecticidal factors. Environmental Microbiology, 2021, 23, 5378-5394.	3.8	13
6	Transcriptome plasticity underlying plant root colonization and insect invasion by <i>Pseudomonas protegens</i> . ISME Journal, 2020, 14, 2766-2782.	9.8	38
7	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain LD120, Isolated from the Marine Alga <i>Saccharina latissima</i> . Microbiology Resource Announcements, 2020, 9, .	0.6	1
8	Pseudomonas protegens CHAO does not increase phosphorus uptake from 33P labeled synthetic hydroxyapatite by wheat grown on calcareous soil. Soil Biology and Biochemistry, 2019, 131, 217-228.	8.8	16
9	T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial <i>Pseudomonas protegens</i> . ISME Journal, 2019, 13, 1318-1329.	9.8	76
10	Protecting maize from rootworm damage with the combined application of arbuscular mycorrhizal fungi, Pseudomonas bacteria and entomopathogenic nematodes. Scientific Reports, 2019, 9, 3127.	3.3	33
11	Updated Genome Sequence and Annotation for the Full Genome of Pseudomonas protegens CHA0. Microbiology Resource Announcements, 2019, 8, .	0.6	5
12	Persistence of root-colonizing <i>Pseudomonas protegens</i> in herbivorous insects throughout different developmental stages and dispersal to new host plants. ISME Journal, 2019, 13, 860-872.	9.8	35
13	Root-colonizing bacteria enhance the levels of (E)-β-caryophyllene produced by maize roots in response to rootworm feeding. Oecologia, 2018, 187, 459-468.	2.0	23
14	Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiology Ecology, 2018, 94, .	2.7	10
15	Relationships between Root Pathogen Resistance, Abundance and Expression of Pseudomonas Antimicrobial Genes, and Soil Properties in Representative Swiss Agricultural Soils. Frontiers in Plant Science, 2017, 8, 427.	3.6	37
16	Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 2017, 8, 1809.	3.6	45
17	Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHAO, CMR12a, and PCL1391 Contribute to Insect Killing. Frontiers in Microbiology, 2017, 8, 100.	3.5	84
18	Specific surface glycan decorations enable antimicrobial peptide resistance in plantâ€beneficial pseudomonads with insectâ€pathogenic properties. Environmental Microbiology, 2016, 18, 4265-4281.	3.8	19

Monika Maurhofer

#	Article	IF	CITATIONS
19	Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME Journal, 2016, 10, 2527-2542.	9.8	127
20	Fire Blight Control: The Struggle Goes On. A Comparison of Different Fire Blight Control Methods in Switzerland with Respect to Biosafety, Efficacy and Durability. International Journal of Environmental Research and Public Health, 2015, 12, 11422-11447.	2.6	45
21	Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics, 2015, 16, 609.	2.8	46
22	Transcriptional Reprogramming of the Mycoparasitic Fungus <i>Ampelomyces quisqualis</i> During the Powdery Mildew Host-Induced Germination. Phytopathology, 2015, 105, 199-209.	2.2	22
23	Domain Shuffling in a Sensor Protein Contributed to the Evolution of Insect Pathogenicity in Plant-Beneficial Pseudomonas protegens. PLoS Pathogens, 2014, 10, e1003964.	4.7	41
24	Full-Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas protegens CHAO. Genome Announcements, 2014, 2, .	0.8	53
25	Control and hostâ€dependent activation of insect toxin expression in a rootâ€associated biocontrol pseudomonad. Environmental Microbiology, 2013, 15, 736-750.	3.8	47
26	Oral insecticidal activity of plantâ€associated pseudomonads. Environmental Microbiology, 2013, 15, 751-763.	3.8	80
27	Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Applied Microbiology and Biotechnology, 2013, 97, 4639-4649.	3.6	87
28	Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers in Plant Science, 2013, 4, 287.	3.6	158
29	Does Wheat Genetically Modified for Disease Resistance Affect Root-Colonizing Pseudomonads and Arbuscular Mycorrhizal Fungi?. PLoS ONE, 2013, 8, e53825.	2.5	20
30	Is the mycoparasitic activity of Ampelomyces quisqualis biocontrol strains related to phylogeny and hydrolytic enzyme production?. Biological Control, 2012, 63, 348-358.	3.0	25
31	Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, 2012, 356, 151-163.	3.7	118
32	Existence of different physiological forms within genetically diverse strains of Ampelomyces quisqualis. Phytoparasitica, 2012, 40, 37-51.	1.2	15
33	Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. Journal of Microbiological Methods, 2011, 84, 379-387.	1.6	14
34	Pyrroloquinoline Quinone Biosynthesis Gene <i>pqqC</i> , a Novel Molecular Marker for Studying the Phylogeny and Diversity of Phosphate-Solubilizing Pseudomonads. Applied and Environmental Microbiology, 2011, 77, 7345-7354.	3.1	62
35	Plant- and Microbe-Derived Compounds Affect the Expression of Genes Encoding Antifungal Compounds in a Pseudomonad with Biocontrol Activity. Applied and Environmental Microbiology, 2011, 77, 2807-2812.	3.1	44
36	Combination of Fluorescent Reporters for Simultaneous Monitoring of Root Colonization and Antifungal Gene Expression by a Biocontrol Pseudomonad on Cereals with Flow Cytometry. Molecular Plant-Microbe Interactions, 2010, 23, 949-961.	2.6	61

#	Article	IF	CITATIONS
37	Quantification of Pseudomonas fluorescens strains F113, CHAO and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. Journal of Microbiological Methods, 2010, 81, 108-115.	1.6	54
38	Interplay between Wheat Cultivars, Biocontrol Pseudomonads, and Soil. Applied and Environmental Microbiology, 2010, 76, 6196-6204.	3.1	55
39	Role of Gluconic Acid Production in the Regulation of Biocontrol Traits of <i>Pseudomonas fluorescens</i> CHA0. Applied and Environmental Microbiology, 2009, 75, 4162-4174.	3.1	178
40	Influence of Host Plant Genotype, Presence of a Pathogen, and Coinoculation with Pseudomonas fluorescens Strains on the Rhizosphere Expression of Hydrogen Cyanide- and 2,4-Diacetylphloroglucinol Biosynthetic Genes in P. fluorescens Biocontrol Strain CHAO. Microbial Ecology, 2009, 57, 267-275.	2.8	32
41	Functional GacS in <i>Pseudomonas</i> DSS73 prevents digestion by <i>Caenorhabditis elegans</i> and protects the nematode from killer flagellates. ISME Journal, 2009, 3, 770-779.	9.8	22
42	Molecular analysis of a novel gene cluster encoding an insect toxin in plantâ€associated strains of <i>Pseudomonas fluorescens</i> . Environmental Microbiology, 2008, 10, 2368-2386.	3.8	145
43	Detection of Plant-Modulated Alterations in Antifungal Gene Expression in <i>Pseudomonas fluorescens</i> CHA0 on Roots by Flow Cytometry. Applied and Environmental Microbiology, 2008, 74, 1339-1349.	3.1	51
44	ISSR fingerprinting for the assessment of the bindweed biocontrol agent Stagonospora convolvuli LA39 after field release. Letters in Applied Microbiology, 2007, 45, 244-251.	2.2	6
45	Elsinochrome A production by the bindweed biocontrol fungus Stagonospora convolvuli LA39 does not pose a risk to the environment or the consumer of treated crops. FEMS Microbiology Ecology, 2007, 59, 194-205.	2.7	20
46	Evaluation of different biological test systems to assess the toxicity of metabolites from fungal biocontrol agents. Toxicology Letters, 2006, 161, 43-52.	0.8	28
47	Two Novel MvaT-Like Global Regulators Control Exoproduct Formation and Biocontrol Activity in Root-Associated Pseudomonas fluorescens CHAO. Molecular Plant-Microbe Interactions, 2006, 19, 313-329.	2.6	44
48	RpoN (σ54) Controls Production of Antifungal Compounds and Biocontrol Activity in Pseudomonas fluorescens CHAO. Molecular Plant-Microbe Interactions, 2005, 18, 260-272.	2.6	54
49	Relationship between aggressiveness of Stagonospora sp. isolates on field and hedge bindweeds, and in vitro production of fungal metabolites cercosporin, elsinochrome A and leptosphaerodione. European Journal of Plant Pathology, 2005, 111, 203-215.	1.7	23
50	Cross Talk between 2,4-Diacetylphloroglucinol-Producing Biocontrol Pseudomonads on Wheat Roots. Applied and Environmental Microbiology, 2004, 70, 1990-1998.	3.1	87
51	Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiology Ecology, 2004, 48, 447-455.	2.7	81
52	Fusaric Acid-Producing Strains of Fusarium oxysporum Alter 2,4-Diacetylphloroglucinol Biosynthetic Gene Expression in Pseudomonas fluorescens CHAO In Vitro and in the Rhizosphere of Wheat. Applied and Environmental Microbiology, 2002, 68, 2229-2235.	3.1	163
53	Autoinduction of 2,4-Diacetylphloroglucinol Biosynthesis in the Biocontrol Agent Pseudomonas fluorescensCHAO and Repression by the Bacterial Metabolites Salicylate and Pyoluteorin. Journal of Bacteriology, 2000, 182, 1215-1225.	2.2	310