Ming-Sheng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952598/publications.pdf

Version: 2024-02-01

393982 433756 33 1,526 19 31 citations h-index g-index papers 33 33 33 1948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease. Vascular Medicine, 2012, 17, 330-341.	0.8	134
2	Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?. Diabetology and Metabolic Syndrome, 2014, 6, 12.	1.2	120
3	Atorvastatin Prevents End-Organ Injury in Salt-Sensitive Hypertension. Hypertension, 2004, 44, 186-190.	1.3	114
4	In Salt-Sensitive Hypertension, Increased Superoxide Production Is Linked to Functional Upregulation of Angiotensin II. Hypertension, 2003, 42, 945-951.	1.3	103
5	Nitric oxide, angiotensin II, and hypertension. Seminars in Nephrology, 2004, 24, 366-378.	0.6	103
6	Reduced NAD(P)H Oxidase in Low Renin Hypertension. Hypertension, 2006, 47, 81-86.	1.3	94
7	Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF- \hat{I}^2 , and fibronectin with concomitant increase in nitric oxide bioavailability. American Journal of Physiology - Renal Physiology, 2008, 295, F53-F59.	1.3	89
8	Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation. Journal of Hypertension, 2010, 28, 527-535.	0.3	89
9	Vascular insulin resistance: A potential link between cardiovascular and metabolic diseases. Current Hypertension Reports, 2009, 11, 48-55.	1.5	83
10	Thiazide diuretics, endothelial function, and vascular oxidative stress. Journal of Hypertension, 2008, 26, 494-500.	0.3	62
11	Puerarin Improves Vascular Insulin Resistance and Cardiovascular Remodeling in Salt-Sensitive Hypertension. The American Journal of Chinese Medicine, 2017, 45, 1169-1184.	1.5	61
12	Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H563-H574.	1.5	56
13	Role of angiotensin II and oxidative stress in vascular insulin resistance linked to hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H833-H839.	1.5	49
14	Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Frontiers in Physiology, 2018, 9, 473.	1.3	46
15	Puerarin protects against endothelial dysfunction and end-organ damage in Ang II-induced hypertension. Clinical and Experimental Hypertension, 2017, 39, 58-64.	0.5	44
16	Skeletal muscle insulin resistance in salt-sensitive hypertension: role of angiotensin II activation of NFκB. Cardiovascular Diabetology, 2015, 14, 45.	2.7	31
17	Vascular but not cardiac remodeling is associated with superoxide production in angiotensin II hypertension. Journal of Hypertension, 2005, 23, 1737-1743.	0.3	29
18	Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage. BioMed Research International, 2015, 2015, 1-8.	0.9	28

#	Article	IF	CITATIONS
19	Oral nicotine aggravates endothelial dysfunction and vascular inflammation in diet-induced obese rats: Role of macrophage TNF1±. PLoS ONE, 2017, 12, e0188439.	1.1	26
20	CAPN1 (Calpain1)-Mediated Impairment of Autophagic Flux Contributes to Cerebral Ischemia-Induced Neuronal Damage. Stroke, 2021, 52, 1809-1821.	1.0	23
21	Benazepril Combined with Either Amlodipine or Hydrochlorothiazide Is More Effective than Monotherapy for Blood Pressure Control and Prevention of End-organ Injury in Hypertensive Dahl Rats. Journal of Cardiovascular Pharmacology, 2006, 48, 857-861.	0.8	21
22	Prevention of diabetes in hypertensive patients: Results and implications from the VALUE trial. Vascular Health and Risk Management, 2009, 5, 361.	1.0	20
23	Combination Therapy of Amlodipine and Atorvastatin Has More Beneficial Vascular Effects Than Monotherapy in Salt-Sensitive Hypertension. American Journal of Hypertension, 2014, 27, 873-880.	1.0	20
24	Resistin-Induced Endoplasmic Reticulum Stress Contributes to the Impairment of Insulin Signaling in Endothelium. Frontiers in Pharmacology, 2018, 9, 1226.	1.6	20
25	Agonistic analog of growth hormone–releasing hormone promotes neurofunctional recovery and neural regeneration in ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
26	Tumor Necrosis Factor Alpha Deficiency Improves Endothelial Function and Cardiovascular Injury in Deoxycorticosterone Acetate/Salt-Hypertensive Mice. BioMed Research International, 2020, 2020, 1-10.	0.9	11
27	Inhibition of YAP activation attenuates renal injury and fibrosis in angiotensin II hypertensive mice. Canadian Journal of Physiology and Pharmacology, 2021, 99, 1000-1006.	0.7	11
28	Activation of Yes-Associated Protein/PDZ-Binding Motif Pathway Contributes to Endothelial Dysfunction and Vascular Inflammation in Angiotensinll Hypertension. Frontiers in Physiology, 2021, 12, 732084.	1.3	9
29	Myeloid Angiotensin II Type 1 Receptor Mediates Macrophage Polarization and Promotes Vascular Injury in DOCA/Salt Hypertensive Mice. Frontiers in Pharmacology, 0, 13 , .	1.6	5
30	Macrophage Depletion Improves Endothelial Insulin Resistance and Protects against Cardiovascular Injury in Salt-Sensitive Hypertension. BioMed Research International, 2020, 2020, 1-11.	0.9	4
31	Macrophage depletion protects against endothelial dysfunction and cardiac remodeling in angiotensin II hypertensive mice. Clinical and Experimental Hypertension, 2021, 43, 699-706.	0.5	3
32	Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta. Korean Journal of Physiology and Pharmacology, 2022, 26, 255-262.	0.6	1
33	GW24-e0756â€Nicotine exacerbates atherosclerosis by upregulation and activation of CD36 in macrophage. Heart, 2013, 99, A17.1-A17.	1.2	0