Christos Ritzoulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1952432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semi-solid extrusion 3D printing of starch-based soft dosage forms for the treatment of paediatric latent tuberculosis infection. Journal of Pharmacy and Pharmacology, 2022, 74, 1498-1506.	1.2	12

The role of glycerol on the thermal gelation of myofibrillar protein from giant squid (Dosidicus) Tj ETQq000 rgBT /Qverlock 10 Tf 50 702 4.2

3	Changes in properties of nano protein particles (NPP) of fish muscle stored at 4°C and its application in food quality assessment. LWT - Food Science and Technology, 2022, 155, 112968.	2.5	3
4	Yellow and Black Soybean Pellet Degradation and Nutrients Hydrolysis During In Vitro Gastrointestinal Digestion. Food Biophysics, 2022, 17, 221-231.	1.4	3
5	The role of guar gum on sensory perception, on food function, and on the development of dysphagia supplements – A review. Food Hydrocolloids for Health, 2022, 2, 100053.	1.6	15
6	Mapping of β-lactoglobulin â^ mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocolloids, 2022, 129, 107640.	5.6	2
7	Stability and rheology of plantâ€derived hydrocolloid – mucin mixtures. Journal of Texture Studies, 2022, , .	1.1	1
8	In vitro digestion of tofu with different textures using an artificial gastric digestive system. Food Research International, 2022, 157, 111458.	2.9	10
9	Interactions and rheology of guar gum–mucin mixtures. Food Hydrocolloids, 2022, 133, 107903.	5.6	2
10	Winery By-product Hydrocolloids as Texture Modifiers in Yogurt Formulations. Journal of Culinary Science and Technology, 2021, 19, 352-371.	0.6	2
11	Foam Stability of Mucin – Caseinate Mixtures: Relevance to Oral Processing. Food Biophysics, 2021, 16, 161-168.	1.4	1
12	Sensory perception of guar gum-induced thickening: Correlations with rheological analysis. Food Hydrocolloids, 2021, 111, 106246.	5.6	12
13	Particle degradation and nutrient bioavailability of soybean milk during in vitro digestion. Food Biophysics, 2021, 16, 58-69.	1.4	10
14	Jet milling conditions impact on wheat flour particle size. Journal of Food Engineering, 2021, 294, 110418.	2.7	13
15	Xanthan gum â~' mucin complexation: Molecular interactions, thermodynamics, and rheological analysis. Food Hydrocolloids, 2021, 114, 106579.	5.6	19
16	Complex coacervate formation between hemp protein isolate and gum Arabic: Formulation and characterization. International Journal of Biological Macromolecules, 2021, 182, 144-153.	3.6	23
17	Recent Progress on Protein-Polyphenol Complexes: Effect on Stability and Nutrients Delivery of Oil-in-Water Emulsion System. Frontiers in Nutrition, 2021, 8, 765589.	1.6	31
18	Pectin–zein based stigmasterol nanodispersions ameliorate dextran sulfate sodium-induced colitis in mice. Food and Function, 2021, 12, 11656-11670.	2.1	6

#	Article	IF	CITATIONS
19	Novel emulsifiers from olive mill compost. Food Hydrocolloids, 2020, 99, 105373.	5.6	8
20	Molecular interactions between gelatin and mucin: Phase behaviour, thermodynamics and rheological studies. Food Hydrocolloids, 2020, 102, 105585.	5.6	11
21	Chemical physics of whey protein isolate in the presence of mucin: From macromolecular interactions to functionality. International Journal of Biological Macromolecules, 2020, 143, 573-581.	3.6	9
22	Properties of nano protein particle in solutions of myofibrillar protein extracted from giant squid (Dosidicusgigas). Food Chemistry, 2020, 330, 127254.	4.2	13
23	Physicochemical properties and emulsification properties of maize starch modified by hydrochloric, phosphoric and tartaric acid. International Journal of Food Science and Technology, 2020, 55, 3595-3603.	1.3	2
24	Inkjet printing of a thermolabile model drug onto FDM-printed substrates: formulation and evaluation. Drug Development and Industrial Pharmacy, 2020, 46, 1253-1264.	0.9	36
25	Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. European Journal of Pharmaceutical Sciences, 2020, 147, 105291.	1.9	91
26	Spontaneous Oleofoams from Waterâ€inâ€Oil Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 243-252.	0.8	2
27	From molecular to colloidal, and then to macroscopic aspects of soft foods. International Journal of Food Science and Technology, 2020, 55, 1851-1852.	1.3	Ο
28	Biologically-relevant interactions, phase separations and thermodynamics of chitosan–mucin binary systems. Process Biochemistry, 2020, 94, 152-163.	1.8	10
29	Rheological investigations of beta glucan functionality: Interactions with mucin. Food Hydrocolloids, 2019, 87, 180-186.	5.6	12
30	Fractionation of a hydrocolloid emulsifier reclaimed from winery waste. Food Chemistry, 2019, 301, 125259.	4.2	3
31	Emulsifiers from Partially Composted Olive Waste. Foods, 2019, 8, 271.	1.9	9
32	Surface properties of adsorbed salivary components at a solid hydrophobic surface using a quartz crystal microbalance with dissipation (QCM–D). Food Hydrocolloids, 2019, 97, 105195.	5.6	19
33	Poly(vinyl alcohol)-borax films as cleaning agents for icons. Archaeological and Anthropological Sciences, 2019, 11, 6259-6271.	0.7	6
34	Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 180-192.	2.0	90
35	Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packaging and Shelf Life, 2019, 22, 100385.	3.3	48
36	The application of diffusing wave spectroscopy (DWS) in soft foods. Food Hydrocolloids, 2019, 96, 671-680.	5.6	14

#	Article	IF	CITATIONS
37	Improved emulsion stability and resveratrol encapsulation by whey protein/gum arabic interaction at oil-water interface. International Journal of Biological Macromolecules, 2019, 133, 466-472.	3.6	38
38	Phytochemical Content of Melissa officinalis L. Herbal Preparations Appropriate for Consumption. Processes, 2019, 7, 88.	1.3	19
39	Interactions between mucin and okra gum during pH cycling. Food Hydrocolloids, 2019, 95, 1-9.	5.6	13
40	Structural characterization of soybean milk particles during in vitro digestive/non-digestive simulation. LWT - Food Science and Technology, 2019, 108, 326-331.	2.5	14
41	In Vitro Digestion of caseinate and Tween 20 Emulsions. Food Biophysics, 2019, 14, 60-68.	1.4	19
42	Saliva could act as an emulsifier during oral processing of oil/fat. Journal of Texture Studies, 2019, 50, 83-89.	1.1	30
43	Food Processing By-Products and Waste: Potential Applications as Emulsifiers and Stabilizers. , 2019, , 235-249.		1
44	Microcalorimetry of the intestinal mucus: Hydrogen bonding and self-assembly of mucin. International Journal of Biological Macromolecules, 2018, 112, 555-560.	3.6	11
45	Extensional and shear rheology of okra hydrocolloid–saliva mixtures. Food Research International, 2018, 106, 204-212.	2.9	26
46	Extensional and shear rheology of a food hydrocolloid. Food Hydrocolloids, 2018, 74, 296-306.	5.6	30
47	Extensional and shear rheology of okra polysaccharides in the presence of artificial saliva. Npj Science of Food, 2018, 2, 20.	2.5	13
48	Shear and extensional rheological characterisation of mucin solutions. Colloids and Surfaces B: Biointerfaces, 2018, 171, 614-621.	2.5	19
49	Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. Food and Bioprocess Technology, 2017, 10, 831-841.	2.6	31
50	Mucilage formation in food: a review on the example of okra. International Journal of Food Science and Technology, 2017, 52, 59-67.	1.3	16
51	Evaluation of sesquiterpenes as permeation enhancers for a model macromolecule across human skin inÂvitro. Journal of Drug Delivery Science and Technology, 2017, 41, 384-389.	1.4	3
52	Local Dynamics During the Mixing of Saliva with a Model Colloidal Food. Food Biophysics, 2017, 12, 433-438.	1.4	3
53	Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chemistry, 2017, 215, 326-332.	4.2	91
54	Self-assembly of a food hydrocolloid: The case of okra mucilage. Food Hydrocolloids, 2017, 66, 190-198.	5.6	16

#	Article	IF	CITATIONS
55	Physicochemical aspects of mucosa surface. RSC Advances, 2016, 6, 102634-102646.	1.7	11
56	Emulsifiers Extracted from Winery Waste. Waste and Biomass Valorization, 2016, 7, 533-542.	1.8	14
57	Thermodynamics of a food macromolecular assembly: the case of okra mucilage. RSC Advances, 2016, 6, 20916-20925.	1.7	7
58	Novel emulsifiers as products from internal Maillard reactions in okra hydrocolloid mucilage. Food Hydrocolloids, 2016, 52, 972-981.	5.6	26
59	Proteins as texture modifiers. , 2015, , 51-69.		1
60	Novel emulsifiers from olive processing solid waste. Food Hydrocolloids, 2015, 48, 274-281.	5.6	28
61	Capillary penetration in cellulose and polyethylene porous media: effect of contact with vapours and partial saturation with a non-miscible liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 297-306.	2.3	8
62	Surface characterization of okra hydrocolloid extract by inverse gas chromatography (IGC). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 37-43.	2.3	20
63	Influence of Citrus Fiber, Rice Bran and Collagen on the Texture and Organoleptic Properties of Low-Fat Frankfurters. Journal of Food Processing and Preservation, 2014, 38, 1759-1771.	0.9	13
64	Composite materials based on okra hydrocolloids and hydroxyapatite. Food Hydrocolloids, 2014, 42, 348-354.	5.6	17
65	Emulsion Flocculation and Stability in a Simple in Vitro Gastrointestinal Model. Food Digestion, 2014, 5, 1-7.	0.9	9
66	Hydrocolloids from quince seed: Extraction, characterization, and study of their emulsifying/stabilizing capacity. Food Hydrocolloids, 2014, 42, 178-186.	5.6	35
67	Sieving fractionation and jet mill micronization affect the functional properties of wheat flour. Journal of Food Engineering, 2014, 134, 24-29.	2.7	78
68	New insights in the production of aerosol antibiotics. Evaluation of the optimal aerosol production system for ampicillin-sulbactam, meropenem, ceftazidime, cefepime and piperacillin-tazobactam. International Journal of Pharmaceutics, 2013, 455, 182-188.	2.6	17
69	Herbicidal potential on <i>Lolium rigidum</i> of nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 2013, 25, 1-10.	1.3	54
70	Effect of fat volume fraction, sodium caseinate, and starch on the optimization of the sensory properties of frankfurter sausages. Food Science and Nutrition, 2013, 1, 32-44.	1.5	8
71	Further experimentation of inhaled; Lantus, Actrapid and Humulin with todays' production systems. International Journal of Pharmaceutics, 2013, 458, 39-47.	2.6	11
72	Establishing the optimal nebulization system for paclitaxel, docetaxel, cisplatin, carboplatin and gemcitabine: Back to drawing the residual cup. International Journal of Pharmaceutics, 2013, 453, 480-487.	2.6	21

#	Article	IF	CITATIONS
73	Okra extracts as emulsifiers for acidic emulsions. Food Research International, 2013, 54, 1730-1737.	2.9	71
74	Internal mouthpiece designs as a future perspective for enhanced aerosol deposition. Comparative results for aerosol chemotherapy and aerosol antibiotics. International Journal of Pharmaceutics, 2013, 456, 325-331.	2.6	12
75	Oregano essential oil as an antimicrobial additive to detergent for hand washing and food contact surface cleaning. Journal of Applied Microbiology, 2013, 115, 987-994.	1.4	17
76	Isolation, characterization and emulsion stabilizing properties of polysaccharides form orchid roots (salep). Food Hydrocolloids, 2012, 28, 68-74.	5.6	29
77	Rheological characterization of okra pectins. Food Hydrocolloids, 2012, 29, 356-362.	5.6	123
78	Interactions between pig gastric mucin and sodium caseinate in solutions andÂinÂemulsions. Food Hydrocolloids, 2012, 29, 382-388.	5.6	35
79	Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocolloids, 2011, 25, 991-999.	5.6	69
80	Ultra-small angle neutron scattering and X-ray tomography studies of caseinate–hydroxyapatite microporous materials. Materials Chemistry and Physics, 2010, 123, 77-82.	2.0	4
81	UTILIZATION OF INVERSE WATERâ€INâ€OIL EMULSIONS AS FAT REPLACERS IN FRANKFURTER MODEL SAUSAGES INFLUENCE OF FAT EMULSION CONTENT ON THE ORGANOLEPTIC AND MECHANICAL PROPERTIES. Journal of Texture Studies, 2010, 41, 62-74.	: 1.1	21
82	EFFECTS OF SELECTED INGREDIENTS AND FAT CONTENT ON THE SENSORY AND MECHANICAL PROPERTIES OF FRANKFURTERâ€TYPE SAUSAGES. Journal of Texture Studies, 2010, 41, 880-898.	1.1	11
83	Competitiveness and Essential Oil Phytotoxicity of Seven Annual Aromatic Plants. Weed Science, 2010, 58, 457-465.	0.8	22
84	The new V12 ultra-small-angle neutron scattering and tomography instrument at the Hahn–Meitner Institut. Journal of Applied Crystallography, 2006, 40, s463-s465.	1.9	21
85	Effect of barley β-glucan concentration on the microstructural and mechanical behaviour of acid-set sodium caseinate gels. Food Hydrocolloids, 2006, 20, 749-756.	5.6	39
86	Milk protein-based emulsion gels for bone tissue engineering. Food Hydrocolloids, 2005, 19, 575-581.	5.6	38
87	Formation of hydroxyapatite/biopolymer biomaterials. I. Microporous composites from solidified emulsions. Journal of Biomedical Materials Research Part B, 2004, 71A, 675-684.	3.0	9
88	Analysis of Light Scattering Data on the Calcium Ion Sensitivity of Caseinate Solution Thermodynamics: Relationship to Emulsion Flocculation. Journal of Colloid and Interface Science, 2001, 239, 87-97.	5.0	66
89	Ultrasonic studies of the development of flocculation in mixed sodium caseinate and Tween 20 emulsions. , 2001, , 132-135.		1
90	Creaming and Rheology of Oil-in-Water Emulsions Containing Sodium Dodecyl Sulfate and Sodium Caseinate. Journal of Colloid and Interface Science, 2000, 224, 148-154.	5.0	61

#	Article	IF	CITATIONS
91	Ostwald ripening of protein-stabilized emulsions: effect of transglutaminase crosslinking. Colloids and Surfaces B: Biointerfaces, 1999, 12, 139-146.	2.5	54
92	Stability of Emulsions Containing Both Sodium Caseinate and Tween 20. Journal of Colloid and Interface Science, 1999, 212, 466-473.	5.0	88
93	A Study in Mixtures of γ-Butyrolactone witho-Xylene andm-Xylene: Densities and Viscosities. Journal of Chemical & Engineering Data, 1999, 44, 1187-1191.	1.0	46
94	Extraction of surfaceâ€active polymers from the compost of olive processing waste. Journal of Food Process Engineering, 0, , e13799.	1.5	1