Michael Blank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1951864/publications.pdf

Version: 2024-02-01

567281 501196 29 903 15 28 citations h-index papers

g-index 29 29 29 1464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Emerging Role of E3 Ubiquitin Ligase SMURF2 in the Regulation of Transcriptional Co-Repressor KAP1 in Untransformed and Cancer Cells and Tissues. Cancers, 2022, 14, 1607.	3.7	2
2	The E3 ubiquitin ligase SMURF2 stabilizes RNA editase ADAR1p110 and promotes its adenosine-to-inosine (A-to-I) editing function. Cellular and Molecular Life Sciences, 2022, 79, 237.	5.4	2
3	"Residential greenness and site-specific cancer: A registry based cohort of 144,427 participants with a 21-years of follow-up, Tel-Aviv district, Israel― Environmental Research, 2022, 212, 113460.	7.5	9
4	Development and characterisation of SMURF2-targeting modifiers. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 401-409.	5.2	2
5	SMURF2â€mediated ubiquitin signaling plays an essential role in the regulation of PARP1 PARylating activity, molecular interactions, and functions in mammalian cells. FASEB Journal, 2021, 35, e21436.	0.5	4
6	The impact of socio-economic and environmental factors on the spatial patterns of cancer incidence in Israel: A registry-based cohort study. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
7	Targeted Regulation of Nuclear Lamins by Ubiquitin and Ubiquitin-Like Modifiers. Cells, 2020, 9, 1340.	4.1	6
8	SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene, 2020, 39, 3396-3410.	5.9	17
9	Altered Expression and Localization of Tumor Suppressive E3 Ubiquitin Ligase SMURF2 in Human Prostate and Breast Cancer. Cancers, 2019, 11, 556.	3.7	19
10	Smurf2 regulates stability and the autophagic–lysosomal turnover of lamin A and its diseaseâ€associated form progerin. Aging Cell, 2018, 17, e12732.	6.7	38
11	Smurfs in Protein Homeostasis, Signaling, and Cancer. Frontiers in Oncology, 2018, 8, 295.	2.8	78
12	Smurf2-Mediated Stabilization of DNA Topoisomerase Ill \hat{I} ± Controls Genomic Integrity. Cancer Research, 2017, 77, 4217-4227.	0.9	24
13	Generation of SMURF2 knockout human cells using the CRISPR/Cas9 system. Analytical Biochemistry, 2017, 531, 56-59.	2.4	7
14	Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Letters, 2017, 384, 19-26.	7.2	85
15	Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. International Journal of Molecular Sciences, 2017, 18, 2066.	4.1	33
16	Functional analysis of protein ubiquitination. Analytical Biochemistry, 2015, 484, 37-39.	2.4	8
17	The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Research, 2015, 43, 4517-4530.	14.5	32
18	Molecular functions of NEDD4 E3 ubiquitin ligases in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 91-106.	7.4	79

#	Article	IF	CITATIONS
19	A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nature Medicine, 2012, 18, 227-234.	30.7	140
20	Programs for Cell Death: Apoptosis is Only One Way to Go. Cell Cycle, 2007, 6, 686-695.	2.6	107
21	"Competitive Quenching― A Mechanism by Which Perihydroxylated Perylenequinone Photosensitizers Can Prevent Adverse Phototoxic Damage Caused by Verteporfin During Photodynamic Therapy. Photochemistry and Photobiology, 2007, 83, 1270-1277.	2.5	9
22	ANTI-cancer Activities of Hypericin in the Dark¶. Photochemistry and Photobiology, 2007, 74, 120-125.	2.5	3
23	Condensin I recruitment and uneven chromatin condensation precede mitotic cell death in response to DNA damage. Journal of Cell Biology, 2006, 174, 195-206.	5.2	22
24	Anti-Angiogenic Activities of Hypericin in vivo: Potential for Ophthalmologic Applications. Angiogenesis, 2005, 8, 35-42.	7.2	29
25	Competitive Quenching: A Possible Novel Approach in Protecting RPE Cells from Damage During PDT. Current Eye Research, 2005, 30, 269-277.	1.5	6
26	Antimetastatic activity of the photodynamic agent hypericin in the dark. International Journal of Cancer, 2004, 111, 596-603.	5.1	45
27	Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. Cancer Research, 2003, 63, 8241-7.	0.9	66
28	Wavelength-dependent Properties of Photodynamic Therapy Using Hypericin in vitro and in an Animal Model¶. Photochemistry and Photobiology, 2002, 76, 335-340.	2.5	2
29	Wavelength-dependent Properties of Photodynamic Therapy Using Hypericin in vitro and in an Animal Model¶. Photochemistry and Photobiology, 2002, 76, 335.	2.5	29