List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1951374/publications.pdf Version: 2024-02-01

IONG-SUN KANG

#	Article	IF	CITATIONS
1	PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation. Cellular and Molecular Life Sciences, 2022, 79, 99.	5.4	11
2	Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells, 2022, 11, 364.	4.1	9
3	PRMT1 suppresses doxorubicin-induced cardiotoxicity by inhibiting endoplasmic reticulum stress. Cellular Signalling, 2022, 98, 110412.	3.6	5
4	BST204 Protects Dexamethasone-Induced Myotube Atrophy through the Upregulation of Myotube Formation and Mitochondrial Function. International Journal of Environmental Research and Public Health, 2021, 18, 2367.	2.6	4
5	Impaired pattern separation in Tg2576 mice is associated with hyperexcitable dentate gyrus caused by Kv4.1 downregulation. Molecular Brain, 2021, 14, 62.	2.6	15
6	Calbindin regulates Kv4.1 trafficking and excitability in dentate granule cells via CaMKII-dependent phosphorylation. Experimental and Molecular Medicine, 2021, 53, 1134-1147.	7.7	2
7	Technical requirements for cultured meat production: a review. Journal of Animal Science and Technology, 2021, 63, 681-692.	2.5	14
8	Role of Protein Arginine Methyltransferases and Inflammation in Muscle Pathophysiology. Frontiers in Physiology, 2021, 12, 712389.	2.8	10
9	SLIT3 promotes myogenic differentiation as a novel therapeutic factor against muscle loss. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1724-1740.	7.3	13
10	Inducible Prmt1 ablation in adult vascular smooth muscle leads to contractile dysfunction and aortic dissection. Experimental and Molecular Medicine, 2021, 53, 1569-1579.	7.7	13
11	Aronia Upregulates Myogenic Differentiation and Augments Muscle Mass and Function Through Muscle Metabolism. Frontiers in Nutrition, 2021, 8, 753643.	3.7	2
12	Spatiotemporal expression of long noncoding RNA <i>Moshe</i> modulates heart cell lineage commitment. RNA Biology, 2021, 18, 640-654.	3.1	9
13	Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling–mediated muscular hypertrophy and myoblast differentiation. Journal of Ginseng Research, 2020, 44, 435-441.	5.7	30
14	PRMT7 methylates and suppresses GLI2 binding to SUFU thereby promoting its activation. Cell Death and Differentiation, 2020, 27, 15-28.	11.2	21
15	Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70. Cell Death and Differentiation, 2020, 27, 573-586.	11.2	24
16	BST204, a Rg3 and Rh2 Enriched Ginseng Extract, Upregulates Myotube Formation and Mitochondrial Function in TNF-α-Induced Atrophic Myotubes. The American Journal of Chinese Medicine, 2020, 48, 631-650.	3.8	8
17	ZNF746/PARIS overexpression induces cellular senescence through FoxO1/p21 axis activation in myoblasts. Cell Death and Disease, 2020, 11, 359.	6.3	14
18	Kv4.1, a Key Ion Channel For Low Frequency Firing of Dentate Granule Cells, Is Crucial for Pattern Separation. Journal of Neuroscience, 2020, 40, 2200-2214.	3.6	20

#	Article	IF	CITATIONS
19	Indoprofen prevents muscle wasting in aged mice through activation of PDK1/AKT pathway. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1070-1088.	7.3	26
20	Satellite cellâ€specific ablation of <i>Cdon</i> impairs integrin activation, FGF signalling, and muscle regeneration. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1089-1103.	7.3	24
21	PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Experimental and Molecular Medicine, 2020, 52, 604-614.	7.7	11
22	Cdo Is Required for Efficient Motor Neuron Generation of Embryonic Stem Cells. International Journal of Stem Cells, 2020, 13, 342-352.	1.8	2
23	Cdo Is Required for Efficient Motor Neuron Generation of Embryonic Stem Cells. International Journal of Stem Cells, 2020, 13, 342-352.	1.8	2
24	Ginsenoside Rg1 augments oxidative metabolism and anabolic response of skeletal muscle in mice. Journal of Ginseng Research, 2019, 43, 475-481.	5.7	10
25	The inhibition of chloride intracellular channel 1 enhances Ca2+ and reactive oxygen species signaling in A549 human lung cancer cells. Experimental and Molecular Medicine, 2019, 51, 1-11.	7.7	13
26	PRMT7 deficiency enhances adipogenesis through modulation of C/EBP-Î ² . Biochemical and Biophysical Research Communications, 2019, 517, 484-490.	2.1	14
27	DDS promotes longevity through a microbiome-mediated starvation signal. Translational Medicine of Aging, 2019, 3, 64-69.	1.3	5
28	Ginsenoside Rg3 upregulates myotube formation and mitochondrial function, thereby protecting myotube atrophy induced by tumor necrosis factor-alpha. Journal of Ethnopharmacology, 2019, 242, 112054.	4.1	30
29	Methylation determines the extracellular calcium sensitivity of the leak channel NALCN in hippocampal dentate granule cells. Experimental and Molecular Medicine, 2019, 51, 1-14.	7.7	13
30	Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Scientific Reports, 2019, 9, 12997.	3.3	8
31	Intracellular Zn ²⁺ Signaling Facilitates Mossy Fiber Input-Induced Heterosynaptic Potentiation of Direct Cortical Inputs in Hippocampal CA3 Pyramidal Cells. Journal of Neuroscience, 2019, 39, 3812-3831.	3.6	15
32	PRMT1 suppresses ATF4-mediated endoplasmic reticulum response in cardiomyocytes. Cell Death and Disease, 2019, 10, 903.	6.3	16
33	Roles of ErbB3-binding protein 1 (EBP1) in embryonic development and gene-silencing control. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24852-24860.	7.1	7
34	Skeletal muscle-specific <i>Prmt1</i> deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy, 2019, 15, 1069-1081.	9.1	79
35	SGTb regulates a surface localization of a guidance receptor BOC to promote neurite outgrowth. Cellular Signalling, 2019, 55, 100-108.	3.6	8
36	Chemical induced conversion of mouse fibroblasts and human adipose-derived stem cells into skeletal muscle-like cells. Biomaterials, 2019, 193, 30-46.	11.4	23

#	Article	IF	CITATIONS
37	Arginine methylation as a key post-translational modification in skeletal muscle homeostasis: a review. Precision and Future Medicine, 2019, 3, 139-145.	1.6	3
38	Endocytosis of KATP Channels Drives Glucose-Stimulated Excitation of Pancreatic Î ² Cells. Cell Reports, 2018, 22, 471-481.	6.4	16
39	Bisphenol A and estradiol impede myoblast differentiation through down-regulating Akt signaling pathway. Toxicology Letters, 2018, 292, 12-19.	0.8	15
40	Black ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth. Journal of Ginseng Research, 2018, 42, 116-121.	5.7	19
41	Estrogen modulates serotonin effects on vasoconstriction through Src inhibition. Experimental and Molecular Medicine, 2018, 50, 1-9.	7.7	13
42	Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nature Communications, 2018, 9, 5107.	12.8	64
43	Long non-coding RNA ChRO1 facilitates ATRX/DAXX-dependent H3.3 deposition for transcription-associated heterochromatin reorganization. Nucleic Acids Research, 2018, 46, 11759-11775.	14.5	37
44	Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1345-E1354.	7.1	45
45	Identification of pathogenic variants in genes related to channelopathy and cardiomyopathy in Korean sudden cardiac arrest survivors. Journal of Human Genetics, 2017, 62, 615-620.	2.3	8
46	An isoflavone compound daidzein elicits myoblast differentiation and myotube growth. Journal of Functional Foods, 2017, 38, 438-446.	3.4	15
47	Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth. Journal of Ginseng Research, 2017, 41, 608-614.	5.7	25
48	A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cellular Signalling, 2017, 30, 30-40.	3.6	22
49	Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts. PLoS ONE, 2017, 12, e0175271.	2.5	20
50	Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation. Chemico-Biological Interactions, 2016, 248, 60-67.	4.0	13
51	Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity. Diabetes, 2016, 65, 1868-1882.	0.6	79
52	Dehydrocorydaline promotes myogenic differentiation via p38 MAPK activation. Molecular Medicine Reports, 2016, 14, 3029-3036.	2.4	14
53	PKN2 and Cdo interact to activate AKT and promote myoblast differentiation. Cell Death and Disease, 2016, 7, e2431-e2431.	6.3	33
54	Fluid flow facilitates inward rectifier K+ current by convectively restoring [K+] at the cell membrane surface. Scientific Reports, 2016, 6, 39585.	3.3	4

#	Article	IF	CITATIONS
55	Peroxisome proliferator-activated receptor β/Ĩ´ (PPARĨ²/Ĩ´) activates promyogenic signaling pathways, thereby promoting myoblast differentiation. Biochemical and Biophysical Research Communications, 2016, 470, 157-162.	2.1	4
56	A Shh coreceptor Cdo is required for efficient cardiomyogenesis of pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2016, 93, 57-66.	1.9	13
57	Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS ONE, 2016, 11, e0158707.	2.5	16
58	Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression. ELife, 2016, 5, .	6.0	37
59	Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skeletal Muscle, 2015, 5, 28.	4.2	9
60	Overweight in Mice and Enhanced Adipogenesis In Vitro Are Associated With Lack of the Hedgehog Coreceptor Boc. Diabetes, 2015, 64, 2092-2103.	0.6	15
61	Kazinol-P from Broussonetia kazinoki enhances skeletal muscle differentiation via p38MAPK and MyoD. Biochemical and Biophysical Research Communications, 2015, 456, 471-475.	2.1	13
62	CDO, an Hh-Coreceptor, Mediates Lung Cancer Cell Proliferation and Tumorigenicity through Hedgehog Signaling. PLoS ONE, 2014, 9, e111701.	2.5	11
63	Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation. Nature Communications, 2014, 5, 5455.	12.8	41
64	Tetrahydropalmatine promotes myoblast differentiation through activation of p38MAPK and MyoD. Biochemical and Biophysical Research Communications, 2014, 455, 147-152.	2.1	21
65	The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Research, 2014, 13, 262-274.	0.7	14
66	Phosphorylation of Stim1 at serine 575 via netrin-2/Cdo–activated ERK1/2 is critical for the promyogenic function of Stim1. Molecular Biology of the Cell, 2012, 23, 1376-1387.	2.1	27
67	TGF-β-activated Kinase 1 (TAK1) and Apoptosis Signal-regulating Kinase 1 (ASK1) Interact with the Promyogenic Receptor Cdo to Promote Myogenic Differentiation via Activation of p38MAPK Pathway. Journal of Biological Chemistry, 2012, 287, 11602-11615.	3.4	33
68	Dual Functions of Highly Potent Graphene Derivative–Poly- <scp>l</scp> -Lysine Composites To Inhibit Bacteria and Support Human Cells. ACS Nano, 2012, 6, 7151-7161.	14.6	141
69	Overlapping Roles and Collective Requirement for the Coreceptors GAS1, CDO, and BOC in SHH Pathway Function. Developmental Cell, 2011, 20, 775-787.	7.0	255
70	Promyogenic function of Integrin/FAK signaling is mediated by Cdo, Cdc42 and MyoD. Cellular Signalling, 2011, 23, 1162-1169.	3.6	33
71	Esco2 promotes neuronal differentiation by repressing Notch signaling. Cellular Signalling, 2011, 23, 1876-1884.	3.6	15
72	Gas1 cooperates with Cdo and promotes myogenic differentiation via activation of p38MAPK. Cellular Signalling, 2011, 23, 2021-2029.	3.6	25

#	Article	IF	CITATIONS
73	Mutations in CDON, Encoding a Hedgehog Receptor, Result in Holoprosencephaly and Defective Interactions with Other Hedgehog Receptors. American Journal of Human Genetics, 2011, 89, 231-240.	6.2	116
74	<i>Boc</i> modifies the holoprosencephaly spectrum of <i>Cdo</i> mutant mice. DMM Disease Models and Mechanisms, 2011, 4, 368-380.	2.4	63
75	Muscle stem cells in developmental and regenerative myogenesis. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 243-248.	2.5	72
76	Cdo Interacts with APPL1 and Activates AKT in Myoblast Differentiation. Molecular Biology of the Cell, 2010, 21, 2399-2411.	2.1	50
77	Cdo Binds Abl To Promote p38α/β Mitogen-Activated Protein Kinase Activity and Myogenic Differentiation. Molecular and Cellular Biology, 2009, 29, 4130-4143.	2.3	43
78	Cdo promotes neuronal differentiation <i>via</i> activation of the p38 mitogenâ€activated protein kinase pathway. FASEB Journal, 2009, 23, 2088-2099.	0.5	46
79	Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo. FEBS Journal, 2009, 276, 5998-6010.	4.7	21
80	A Cdo–Bnip-2–Cdc42 signaling pathway regulates p38α/β MAPK activity and myogenic differentiation. Journal of Cell Biology, 2008, 182, 497-507.	5.2	98
81	Regulation of Myoblast Motility and Fusion by the CXCR4-associated Sialomucin, CD164. Journal of Biological Chemistry, 2008, 283, 8301-8309.	3.4	65
82	Hedgehog Signaling: Cooking with Gas1. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe50.	3.9	25
83	Activation of p38α/β MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. Journal of Cell Biology, 2006, 175, 383-388.	5.2	117
84	The Cell Surface Membrane Proteins Cdo and Boc Are Components and Targets of the Hedgehog Signaling Pathway and Feedback Network in Mice. Developmental Cell, 2006, 10, 647-656.	7.0	334
85	Cdo Functions at Multiple Points in the Sonic Hedgehog Pathway, and Cdo-Deficient Mice Accurately Model Human Holoprosencephaly. Developmental Cell, 2006, 10, 657-665.	7.0	226
86	Cortical Thinning and Hydrocephalus in Mice Lacking the Immunoglobulin Superfamily Member CDO. Molecular and Cellular Biology, 2006, 26, 3764-3772.	2.3	37
87	Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. Journal of Cell Science, 2005, 118, 2355-2362.	2.0	140
88	Netrins and neogenin promote myotube formation. Journal of Cell Biology, 2004, 167, 493-504.	5.2	132
89	Positive Regulation of Myogenic bHLH Factors and Skeletal Muscle Development by the Cell Surface Receptor CDO. Developmental Cell, 2004, 7, 843-854.	7.0	86
90	Promyogenic members of the Ig and cadherin families associate to positively regulate differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3989-3994.	7.1	71

#	Article	IF	CITATIONS
91	BOC, an Ig superfamily member, associates with CDO to positively regulate myogenic differentiation. EMBO Journal, 2002, 21, 114-124.	7.8	130
92	CDO: An Oncogene-, Serum-, and Anchorage-regulated Member of the Ig/Fibronectin Type III Repeat Family. Journal of Cell Biology, 1997, 138, 203-213.	5.2	82