Jeonghee Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1951291/publications.pdf

Version: 2024-02-01

393982 433756 1,111 45 19 31 citations g-index h-index papers 46 46 46 1931 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dietary Flavonoids and Gastric Cancer Risk in a Korean Population. Nutrients, 2014, 6, 4961-4973.	1.7	76
2	Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Scientific Reports, 2019, 9, 13589.	1.6	74
3	Association between Dietary Inflammatory Index and Metabolic Syndrome in the General Korean Population. Nutrients, 2018, 10, 648.	1.7	58
4	Dietary Inflammatory Index and Risk of Colorectal Cancer: A Case-Control Study in Korea. Nutrients, 2016, 8, 469.	1.7	53
5	Dietary patterns and colorectal cancer risk in a Korean population. Medicine (United States), 2016, 95, e3759.	0.4	53
6	Dietary Carotenoids Intake and the Risk of Gastric Cancer: A Caseâ€"Control Study in Korea. Nutrients, 2018, 10, 1031.	1.7	50
7	Risk Factors for Thyroid Cancer: A Hospital-Based Case-Control Study in Korean Adults. Cancer Research and Treatment, 2017, 49, 70-78.	1.3	47
8	Isoflavone and Soyfood Intake and Colorectal Cancer Risk: A Case-Control Study in Korea. PLoS ONE, 2015, 10, e0143228.	1.1	43
9	Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric Cancer Risk in Koreans. Scientific Reports, 2016, 6, 26904.	1.6	41
10	Coffee Consumption and the Risk of Obesity in Korean Women. Nutrients, 2017, 9, 1340.	1.7	40
11	Effect of dietary vitamin C on gastric cancer risk in the Korean population. World Journal of Gastroenterology, 2016, 22, 6257.	1.4	37
12	Dietary Factors and Female Breast Cancer Risk: A Prospective Cohort Study. Nutrients, 2017, 9, 1331.	1.7	31
13	Dietary calcium intake and the risk of colorectal cancer: a case control study. BMC Cancer, 2015, 15, 966.	1.1	30
14	Dietary folate, oneâ€carbon metabolismâ€related genes, and gastric cancer risk in Korea. Molecular Nutrition and Food Research, 2016, 60, 337-345.	1.5	26
15	Dietary patterns and gastric cancer risk in a Korean population: a case–control study. European Journal of Nutrition, 2021, 60, 389-397.	1.8	24
16	Effects of alcohol consumption, ALDH2 rs671 polymorphism, and Helicobacter pylori infection on the gastric cancer risk in a Korean population. Oncotarget, 2017, 8, 6630-6641.	0.8	24
17	Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite, 2017, 113, 178-186.	1.8	23
18	Dietary Lutein Plus Zeaxanthin Intake and DICER1 rs3742330 A > G Polymorphism Relative to Colorectal Cancer Risk. Scientific Reports, 2019, 9, 3406.	1.6	23

#	Article	IF	CITATIONS
19	Dietary Flavonoids, CYP1A1 Genetic Variants, and the Risk of Colorectal Cancer in a Korean population. Scientific Reports, 2017, 7, 128.	1.6	22
20	Dietary n-3 and n-6 polyunsaturated fatty acids, the FADS gene, and the risk of gastric cancer in a Korean population. Scientific Reports, 2018, 8, 3823.	1.6	21
21	Dietary mercury intake and colorectal cancer risk: A case-control study. Clinical Nutrition, 2020, 39, 2106-2113.	2.3	21
22	Biomarkers of thyroid function and autoimmunity for predicting high-risk groups of thyroid cancer: a nested case–control study. BMC Cancer, 2014, 14, 873.	1.1	20
23	Variations in the bitterness perception-related genes <i>TAS2R38</i> and <i>CA6</i> modify the risk for colorectal cancer in Koreans. Oncotarget, 2017, 8, 21253-21265.	0.8	20
24	Vitamin D receptor Fokl polymorphism and the risks of colorectal cancer, inflammatory bowel disease, and colorectal adenoma. Scientific Reports, 2018, 8, 12899.	1.6	20
25	Genetic variations in TAS2R3 and TAS2R4 bitterness receptors modify papillary carcinoma risk and thyroid function in Korean females. Scientific Reports, 2018, 8, 15004.	1.6	18
26	Inflammatory Dietary Pattern, IL-17F Genetic Variant, and the Risk of Colorectal Cancer. Nutrients, 2018, 10, 724.	1.7	18
27	Variations in <i>TAS1R</i> taste receptor gene family modify food intake and gastric cancer risk in a Korean population. Molecular Nutrition and Food Research, 2016, 60, 2433-2445.	1.5	17
28	Effects of Soy Product Intake and Interleukin Genetic Polymorphisms on Early Gastric Cancer Risk in Korea: A Case-Control Study. Cancer Research and Treatment, 2017, 49, 1044-1056.	1.3	17
29	Association between dietary cadmium intake and early gastric cancer risk in a Korean population: a case–control study. European Journal of Nutrition, 2019, 58, 3255-3266.	1.8	17
30	Genetic variation in PPARGC1A may affect the role of diet-associated inflammation in colorectal carcinogenesis. Oncotarget, 2017, 8, 8550-8558.	0.8	16
31	Genome-Wide Association of Genetic Variation in the PSCA Gene with Gastric Cancer Susceptibility in a Korean Population. Cancer Research and Treatment, 2019, 51, 748-757.	1.3	15
32	Association between bacteria other than <i>Helicobacter pylori</i> and the risk of gastric cancer. Helicobacter, 2021, 26, e12836.	1.6	14
33	Physical Activity and Gastric Cancer Risk in Patients with and without Helicobacter pylori Infection in A Korean Population: A Hospital-Based Case-Control Study. Cancers, 2018, 10, 369.	1.7	11
34	Alterations in Gastric Microbial Communities Are Associated with Risk of Gastric Cancer in a Korean Population: A Case-Control Study. Cancers, 2020, 12, 2619.	1.7	11
35	Plasma inflammatory biomarkers and modifiable lifestyle factors associated with colorectal cancer risk. Clinical Nutrition, 2020, 39, 2778-2785.	2.3	10
36	Identification of Dietary Pattern Networks Associated with Gastric Cancer Using Gaussian Graphical Models: A Case-Control Study. Cancers, 2020, 12, 1044.	1.7	10

#	Article	IF	CITATIONS
37	Association Between Dietary Patterns and Dyslipidemia in Korean Women. Frontiers in Nutrition, 2021, 8, 756257.	1.6	10
38	Protective Effect of Green Tea Consumption on Colorectal Cancer Varies by Lifestyle Factors. Nutrients, 2019, 11, 2612.	1.7	9
39	The Associations of Dietary Iron Intake and the Transferrin Receptor (TFRC) rs9846149 Polymorphism with the Risk of Gastric Cancer: A Case–Control Study Conducted in Korea. Nutrients, 2021, 13, 2600.	1.7	9
40	Association between nutrient intake and thyroid cancer risk in Korean women. Nutrition Research and Practice, 2016, 10, 336.	0.7	7
41	Interaction between alcohol consumption and methylenetetrahydrofolate reductase polymorphisms in thyroid cancer risk: National Cancer Center cohort in Korea. Scientific Reports, 2018, 8, 4077.	1.6	6
42	Differences in Dietary Patterns Identified by the Gaussian Graphical Model in Korean Adults With and Without a Self-Reported Cancer Diagnosis. Journal of the Academy of Nutrition and Dietetics, 2021, 121, 1484-1496.e3.	0.4	6
43	TNF genetic polymorphism (rs1799964) may modify the effect of the dietary inflammatory index on gastric cancer in a case–control study. Scientific Reports, 2020, 10, 14590.	1.6	6
44	Food Intake Behavior in Cancer Survivors in Comparison With Healthy General Population; From the Health Examination Center-based Cohort. Journal of Cancer Prevention, 2019, 24, 208-216.	0.8	6
45	Association between dietary intake networks identified through a Gaussian graphical model and the risk of cancer: a prospective cohort study. European Journal of Nutrition, 0, , .	1.8	1