
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1950721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Causes for the increase of early-season freezing events under a warmer climate at alpine Treelines in southeast Tibet. Agricultural and Forest Meteorology, 2022, 316, 108863.	4.8	5
2	Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environmental Research, 2020, 189, 109917.	7.5	32
3	Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Scientific Reports, 2020, 10, 18797.	3.3	18
4	Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Science of the Total Environment, 2020, 714, 136787.	8.0	71
5	Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agricultural and Forest Meteorology, 2019, 279, 107761.	4.8	51
6	The effect of pika grazing on Stipa purpurea is amplified by warming but alleviated by increased precipitation in an alpine grassland. Plant Ecology, 2019, 220, 371-381.	1.6	13
7	Precipitation alters temperature effects on ecosystem respiration in Tibetan alpine meadows. Agricultural and Forest Meteorology, 2018, 252, 121-129.	4.8	35
8	Water Shortage Drives Interactions Between Cushion and Beneficiary Species Along Elevation Gradients in Dry Himalayas. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 226-238.	3.0	7
9	Leaf Î [°] 13C as an indicator of water availability along elevation gradients in the dry Himalayas. Ecological Indicators, 2018, 94, 266-273.	6.3	20
10	Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Scientific Reports, 2016, 6, 20985.	3.3	38
11	Optimal balance of water use efficiency and leaf construction cost with a link to the drought threshold of the desert steppe ecotone in northern China. Annals of Botany, 2016, 118, 541-553.	2.9	10
12	Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 218-219, 114-121.	4.8	55
13	No evidence of facilitation collapse in the Tibetan plateau. Journal of Vegetation Science, 2015, 26, 233-242.	2.2	39
14	Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60, 3048-3056.	0.7	66
15	Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate: Evidence from a reciprocal transplant experiment in the Sergyemla Mountains, southeast Tibet. Agricultural and Forest Meteorology, 2014, 187, 83-92.	4.8	35
16	Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semiâ€arid regions. Journal of Vegetation Science, 2013, 24, 189-201.	2.2	123
17	Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecology, 2012, 213, 1843-1855.	1.6	27
18	Spatiotemporal Variability of Soil Temperature and Moisture across two Contrasting Timberline Ecotones in the Sergyemla Mountains, Southeast Tibet. Arctic, Antarctic, and Alpine Research, 2011, 43, 229-238.	1.1	50

??

#	Article	IF	CITATIONS
19	Seasonal variations in leaf δ ¹³ C and nitrogen associated with foliage turnover and carbon gain for a wet subalpine fir forest in the Gongga Mountains, eastern Tibetan Plateau. Ecological Research, 2011, 26, 253-263.	1.5	9
20	Leaf life span as a simple predictor of evergreen forest zonation in China. Journal of Biogeography, 2010, 37, 27-36.	3.0	19
21	Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect. Ecography, 2009, 32, 526-538.	4.5	45
22	Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia, 2005, 142, 261-273.	2.0	58
23	Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. Forest Ecology and Management, 2005, 206, 349-363.	3.2	46
24	Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography, 2004, 13, 345-358.	5.8	121